Li Hanxi, Hu Jiayang, Chen Anzhe, Wang Chenhao, Chen Li, Tian Feng, Zhou Jiachao, Zhao Yuda, Chen Jinrui, Tong Yi, Loh Kian Ping, Xu Yang, Zhang Yishu, Hasan Tawfique, Yu Bin
School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China.
Adv Mater. 2022 Dec;34(51):e2207371. doi: 10.1002/adma.202207371. Epub 2022 Nov 14.
Brain-inspired neuromorphic computing systems with the potential to drive the next wave of artificial intelligence demand a spectrum of critical components beyond simple characteristics. An emerging research trend is to achieve advanced functions with ultracompact neuromorphic devices. In this work, a single-transistor neuron is demonstrated that implements excitatory-inhibitory (E-I) spatiotemporal integration and a series of essential neuron behaviors. Neuronal oscillations, the fundamental mode of neuronal communication, that construct high-dimensional population code to achieve efficient computing in the brain, can also be demonstrated by the neuron transistors. The highly scalable E-I neuron can be the basic building block for implementing core neuronal circuit motifs and large-scale architectural plans to replicate energy-efficient neural computations, forming the foundation of future integrated neuromorphic systems.
具有推动下一代人工智能潜力的受脑启发的神经形态计算系统需要一系列超越简单特性的关键组件。一个新兴的研究趋势是用超紧凑型神经形态器件实现先进功能。在这项工作中,展示了一种单晶体管神经元,它实现了兴奋性 - 抑制性(E - I)时空整合以及一系列基本的神经元行为。神经元振荡是神经元通信的基本模式,它构建高维群体编码以在大脑中实现高效计算,也可以通过神经元晶体管来展示。这种高度可扩展的E - I神经元可以成为实现核心神经元电路基元和大规模架构计划以复制节能神经计算的基本构建块,为未来的集成神经形态系统奠定基础。