Lara-Hernandez A, Rienmuller T, Juarez I, Perez M, Reyna F, Baumgartner D, Makarenko V N, Bockeria O L, Maksudov M, Rienmuller R, Baumgartner C
IEEE Trans Med Imaging. 2023 Mar;42(3):684-696. doi: 10.1109/TMI.2022.3214380. Epub 2023 Mar 2.
Registration of dynamic CT image sequences is a crucial preprocessing step for clinical evaluation of multiple physiological determinants in the heart such as global and regional myocardial perfusion. In this work, we present a deformable deep learning-based image registration method for quantitative myocardial perfusion CT examinations, which in contrast to previous approaches, takes into account some unique challenges such as low image quality with less accurate anatomical landmarks, dynamic changes of contrast agent concentration in the heart chambers and tissue, and misalignment caused by cardiac stress, respiration, and patient motion. The introduced method uses a recursive cascade network with a ventricle segmentation module, and a novel loss function that accounts for local contrast changes over time. It was trained and validated on a dataset of n = 118 patients with known or suspected coronary artery disease and/or aortic valve insufficiency. Our results demonstrate that the proposed method is capable of registering dynamic cardiac perfusion sequences by reducing local tissue displacements of the left ventricle (LV), whereas contrast changes do not affect the registration and image quality, in particular the absolute CT (HU) values of the entire CT sequence. In addition, the deep learning-based approach presented reveals a short processing time of a few seconds compared to conventional image registration methods, demonstrating its application potential for quantitative CT myocardial perfusion measurements in daily clinical routine.
动态CT图像序列的配准是心脏多种生理决定因素(如整体和局部心肌灌注)临床评估的关键预处理步骤。在这项工作中,我们提出了一种基于深度学习的可变形图像配准方法,用于定量心肌灌注CT检查。与以往方法不同的是,该方法考虑了一些独特的挑战,如图像质量低、解剖标志不准确、心腔和组织中造影剂浓度的动态变化以及心脏应激、呼吸和患者运动引起的错位。所介绍的方法使用了一个带有心室分割模块的递归级联网络,以及一个考虑局部对比度随时间变化的新型损失函数。该方法在一个包含n = 118例已知或疑似冠状动脉疾病和/或主动脉瓣关闭不全患者的数据集上进行了训练和验证。我们的结果表明,所提出的方法能够通过减少左心室(LV)的局部组织位移来配准动态心脏灌注序列,而对比度变化不会影响配准和图像质量,特别是整个CT序列的绝对CT(HU)值。此外,与传统图像配准方法相比,所提出的基于深度学习的方法处理时间短,仅需几秒钟,这表明了其在日常临床常规中进行定量CT心肌灌注测量的应用潜力。