Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Calle del Puente 222, Mexico City 14380, Mexico.
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 01000, Mexico.
Int J Mol Sci. 2022 Sep 23;23(19):11199. doi: 10.3390/ijms231911199.
Using structural relaxation calculations and first-principles molecular dynamics (FPMD), we performed numerical simulations to explore the interaction of a 2D MoS surface and a platinum atom, calculating the optical properties of the resulting material. We explored three initial positions for the interaction of the Pt atom and the pristine MoS surface, plus another position between Pt and the MoS surface with a sulfur vacancy V. The surface absorbed the Pt atom in all cases considered, with absorption energies ranging from -2.77 eV to -5.83 eV. We calculated the optical properties and band structure of the two cases with the largest absorption energies (-3.45 eV and -5.83 eV). The pristine MoS is a semiconductor with a gap of around 1.80 eV. With the adsorption of the Pt atom (the -3.45 eV case), the material reduces its band gap to 0.95 eV. Additionally, the optical absorption in the visible range is greatly increased. The energy band structure of the 2D MoS with a sulfur vacancy V shows a band gap of 0.74 eV, with consequent changes in its optical properties. After the adsorption of Pt atoms in the V vacancy, the material has a band gap of 1.06 eV. In this case, the optical absorption in the visible range increases by about eight times. The reflectivity in the infrared range gets roughly doubled for both situations of the Pt-absorbed atom considered. Finally, we performed two FPMD runs at 300 K to test the stability of the cases with the lowest and highest absorption energies observed, confirming the qualitative results obtained with the structural relaxations.
使用结构弛豫计算和第一性原理分子动力学(FPMD),我们进行了数值模拟,以探索二维 MoS 表面和铂原子的相互作用,计算所得材料的光学性质。我们探索了 Pt 原子与原始 MoS 表面相互作用的三个初始位置,以及 Pt 和具有硫空位 V 的 MoS 表面之间的另一个位置。在所有考虑的情况下,表面都吸收了 Pt 原子,吸收能范围为-2.77 eV 至-5.83 eV。我们计算了具有最大吸收能(-3.45 eV 和-5.83 eV)的两种情况的光学性质和能带结构。原始的 MoS 是一种半导体,其带隙约为 1.80 eV。随着 Pt 原子的吸附(-3.45 eV 情况),材料的带隙减小到 0.95 eV。此外,可见光范围内的光吸收大大增加。具有硫空位 V 的二维 MoS 的能带结构显示带隙为 0.74 eV,其光学性质随之发生变化。在 V 空位中吸附 Pt 原子后,材料的带隙为 1.06 eV。在这种情况下,可见光范围内的光吸收增加了约八倍。两种情况下的红外反射率都大致增加了一倍,考虑到吸收原子的 Pt。最后,我们在 300 K 下进行了两次 FPMD 运行,以测试观察到的吸收能最低和最高的两种情况下的稳定性,证实了结构弛豫获得的定性结果。