Gowthaman Naveenbalaji, Srivastava Viranjay M
Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa.
Nanomaterials (Basel). 2022 Sep 27;12(19):3374. doi: 10.3390/nano12193374.
In this work, three-dimensional modeling of the surface potential along the cylindrical surrounding double-gate (CSDG) MOSFET is proposed. The derived surface potential is used to predict the values of electron mobility along the length of the device, thereby deriving the drain current equation at the end of the device. The expressions are used for modeling the symmetric doped and undoped channel CSDG MOSFET device. This model uses Pao-Sah's double integral to derive the current equation for the concentric cylindrical structure of the CSDG MOSFET. The three-dimensional surface potential estimation is performed analytically for doped and undoped device parameters. The maximum oxidant concentration of the oxide layer is observed to be 4.37 × 10 cm of the thickness of 0.82 nm for (100) and 3.90 × 10 cm of the thickness of 0.96 nm for (111) for dry oxidation, and 2.56 × 10 cm of thickness 0.33 nm for (100) and 2.11 × 10 cm of thickness 0.49 nm for (111) for wet oxidation environment conditions. Being an extensive analytical approach, the drain current serves the purpose of electron concentration explicitly inside the concentric cylindrical structures. The behavior of the device is analyzed for various threshold conditions of the gate voltage and other parameters.
在这项工作中,提出了沿圆柱形环绕双栅(CSDG)MOSFET表面电势的三维建模。导出的表面电势用于预测沿器件长度方向的电子迁移率值,从而推导出器件末端的漏极电流方程。这些表达式用于对对称掺杂和未掺杂沟道的CSDG MOSFET器件进行建模。该模型使用Pao-Sah双积分来推导CSDG MOSFET同心圆柱结构的电流方程。对掺杂和未掺杂器件参数进行了三维表面电势的解析估计。对于干氧化,(100)晶面的氧化层最大氧化剂浓度为4.37×10个/cm,厚度为0.82nm;(111)晶面的最大氧化剂浓度为3.90×10个/cm,厚度为0.96nm。对于湿氧化环境条件,(100)晶面的最大氧化剂浓度为2.56×10个/cm,厚度为0.33nm;(111)晶面的最大氧化剂浓度为2.11×10个/cm,厚度为0.49nm。作为一种广泛的解析方法,漏极电流明确地体现了同心圆柱结构内部的电子浓度情况。针对栅极电压和其他参数的各种阈值条件,对器件的行为进行了分析。