Suppr超能文献

基于先进技术的盲人实时火灾预警系统。

Improved Real-Time Fire Warning System Based on Advanced Technologies for Visually Impaired People.

机构信息

Department of Computer Engineering, Gachon University, Sujeong-Gu, Seongnam-si 461-701, Gyeonggi-do, Korea.

出版信息

Sensors (Basel). 2022 Sep 26;22(19):7305. doi: 10.3390/s22197305.

Abstract

Early fire detection and notification techniques provide fire prevention and safety information to blind and visually impaired (BVI) people within a short period of time in emergency situations when fires occur in indoor environments. Given its direct impact on human safety and the environment, fire detection is a difficult but crucial problem. To prevent injuries and property damage, advanced technology requires appropriate methods for detecting fires as quickly as possible. In this study, to reduce the loss of human lives and property damage, we introduce the development of the vision-based early flame recognition and notification approach using artificial intelligence for assisting BVI people. The proposed fire alarm control system for indoor buildings can provide accurate information on fire scenes. In our proposed method, all the processes performed manually were automated, and the performance efficiency and quality of fire classification were improved. To perform real-time monitoring and enhance the detection accuracy of indoor fire disasters, the proposed system uses the YOLOv5m model, which is an updated version of the traditional YOLOv5. The experimental results show that the proposed system successfully detected and notified the occurrence of catastrophic fires with high speed and accuracy at any time of day or night, regardless of the shape or size of the fire. Finally, we compared the competitiveness level of our method with that of other conventional fire-detection methods to confirm the seamless classification results achieved using performance evaluation matrices.

摘要

早期火灾探测和报警技术在室内环境发生火灾的紧急情况下,为盲人和视力障碍者(BVI)提供了在短时间内的火灾预防和安全信息。鉴于其对人类安全和环境的直接影响,火灾探测是一个困难但至关重要的问题。为了防止人员受伤和财产损失,先进的技术需要适当的方法来尽快探测到火灾。在这项研究中,为了减少人员伤亡和财产损失,我们引入了基于视觉的早期火焰识别和通知方法的开发,该方法使用人工智能来帮助 BVI 人群。所提出的用于室内建筑物的火灾报警控制系统可以提供火灾现场的准确信息。在我们提出的方法中,所有手动执行的过程都实现了自动化,并且提高了火灾分类的性能效率和质量。为了进行实时监控并提高室内火灾灾害的检测精度,所提出的系统使用了 YOLOv5m 模型,这是传统 YOLOv5 的更新版本。实验结果表明,所提出的系统能够成功地检测和通知白天或晚上任何时间发生的灾难性火灾,并且火灾的形状和大小都无关紧要。最后,我们将我们的方法与其他传统火灾检测方法的竞争力水平进行了比较,以确认使用性能评估矩阵实现的无缝分类结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b5/9572756/fedbdd86fa21/sensors-22-07305-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验