Suppr超能文献

一种使用递归神经网络和海马优化器算法辅助视障人士的先进火灾探测系统。

An advanced fire detection system for assisting visually challenged people using recurrent neural network and sea-horse optimizer algorithm.

作者信息

Al-Wesabi Fahd N, Alharbi Abeer A K, Yaseen Ishfaq

机构信息

Department of Computer Science, Applied College at Mahayil, King Khalid University, Abha, Saudi Arabia.

Department of Information Systems, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 1;15(1):21493. doi: 10.1038/s41598-025-91829-9.

Abstract

The developing elderly population undergoes a high level of eyesight and mental impairment, which frequently results in a defeat of independence. That kind of person should do vital daily tasks like heating and cooking, with methods and devices intended for visually unaffected persons, which does not consider the requirements of people with blind and intellectual impairment. Innovative technology needs the proper techniques for perceiving fires as rapidly as possible to avert damages. Initial fire recognition and notification models deliver fire inhibition and protection information to visually challenged individuals in an emergency if a fire happens indoors. Using an early fire recognition and warning model for blind individuals can decrease the number of victims, the number of losses, and, most essentially, early deaths. Recently, the growth of the fire recognition approach using artificial intelligence (AI) has advanced in helping blind people. This manuscript presents a Smart Fire Detection System for Assisting the Blind Using Attention Mechanism-Driven Recurrent Neural Network and Seahorse Optimizer Algorithm (SFDAB-ARNNSHO). The main intention of the SFDAB-ARNNSHO method is to detect and classify fire for blind people. To achieve this, the proposed SFDAB-ARNNSHO model performs image pre-processing by utilizing the sobel filtering (SF) model to remove noise in input data. Furthermore, the fusion of feature extraction comprises three methods, EfficientNetB7, CapsNet, and ShuffleNetV2. Furthermore, the SFDAB-ARNNSHO model performs fire detection and classification using stacked two-layer bidirectional long short-term memory with attention mechanism (SBiLSTM-AM) technique. Finally, the parameter tuning of the SBiLSTM-AM method is accomplished by implementing the seahorse optimizer (SHO) technique. The simulation validation of the SFDAB-ARNNSHO methodology is examined under the fire detection dataset, and the outcomes are measured using various measures. The performance validation of the SFDAB-ARNNSHO methodology portrayed a superior accuracy value of 99.30% over existing models under diverse measures.

摘要

老年人群体在视力和精神方面存在较高程度的损伤,这常常导致他们失去独立性。这类人需要使用为视力正常者设计的方法和设备来完成诸如取暖和烹饪等日常重要任务,而这些方法和设备并未考虑到盲人和智力受损者的需求。创新技术需要合适的技术来尽快察觉火灾,以避免损失。初始火灾识别和通知模型在室内发生火灾的紧急情况下,能向视障人士提供火灾抑制和保护信息。为盲人使用早期火灾识别和预警模型可以减少受害者数量、损失数量,最重要的是减少早期死亡人数。最近,利用人工智能(AI)的火灾识别方法的发展在帮助盲人方面取得了进展。本文提出了一种基于注意力机制驱动的递归神经网络和海马优化算法的智能火灾探测系统(SFDAB - ARNNSHO),用于帮助盲人。SFDAB - ARNNSHO方法的主要目的是为盲人检测和分类火灾。为实现这一目标,所提出的SFDAB - ARNNSHO模型利用索贝尔滤波(SF)模型进行图像预处理,以去除输入数据中的噪声。此外,特征提取融合包括三种方法:高效神经网络B7(EfficientNetB7)、胶囊网络(CapsNet)和洗牌网络V2(ShuffleNetV2)。此外,SFDAB - ARNNSHO模型使用带有注意力机制的堆叠两层双向长短期记忆(SBiLSTM - AM)技术进行火灾检测和分类。最后,通过实施海马优化器(SHO)技术完成SBiLSTM - AM方法的参数调整。在火灾检测数据集下对SFDAB - ARNNSHO方法进行了仿真验证,并使用各种指标对结果进行了测量。SFDAB - ARNNSHO方法的性能验证表明,在各种指标下,其准确率高达99.30%,优于现有模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验