Suppr超能文献

基于深度学习的真实磁共振成像合成计算机断层扫描在伽玛刀放射外科剂量规划准确性提升中的临床应用:一项概念验证研究

Clinical application of deep learning-based synthetic CT from real MRI to improve dose planning accuracy in Gamma Knife radiosurgery: a proof of concept study.

作者信息

Park So Hee, Choi Dong Min, Jung In-Ho, Chang Kyung Won, Kim Myung Ji, Jung Hyun Ho, Chang Jin Woo, Kim Hwiyoung, Chang Won Seok

机构信息

Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.

Center of Clinical Imaging Data Science, Department of Radiology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.

出版信息

Biomed Eng Lett. 2022 Jun 13;12(4):359-367. doi: 10.1007/s13534-022-00227-x. eCollection 2022 Nov.

Abstract

Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio (TMR) algorithm, which calculates radiation dose without considering heterogeneous radiation attenuation in the tissue. In order to plan the dose considering the radiation attenuation, the Convolution algorithm should be used, and additional radiation exposure for computed tomography (CT) and registration errors between MR and CT are entailed. This study investigated the clinical feasibility of synthetic CT (sCT) from GKRS planning MR using deep learning. The model was trained using frame-based contrast-enhanced T1-weighted MR images and corresponding CT slices from 54 training subjects acquired for GKRS planning. The model was applied prospectively to 60 lesions in 43 patients including benign tumor such as meningioma and pituitary adenoma, metastatic brain tumors, and vascular disease of various location for evaluating the model and its application. We evaluated the sCT and compared between treatment plans made with MR only (TMR 10 plan), MR and real CT (rCT; Convolution with rCT [Conv-rCT] plan), and MR and synthetic CT (Convolution with sCT [Conv-sCT] plan). The mean absolute error (MAE) of 43 sCT was 107.35 ± 16.47 Hounsfield units. The TMR 10 treatment plan differed significantly from plans made by Conv-sCT and Conv-rCT. However, the Conv-sCT and Conv-rCT plans were similar. This study showed the practical applicability of deep learning based on sCT in GKRS. Our results support the possibility of formulating GKRS treatment plans while considering radiation attenuation in the tissue using GKRS planning MR and no radiation exposure.

摘要

伽玛刀放射外科手术(GKRS)的剂量规划采用基于磁共振(MR)的组织最大比(TMR)算法,该算法在计算辐射剂量时未考虑组织中的异质辐射衰减。为了在考虑辐射衰减的情况下规划剂量,应使用卷积算法,并且需要进行计算机断层扫描(CT)的额外辐射暴露以及MR与CT之间的配准误差。本研究调查了使用深度学习从GKRS规划MR生成合成CT(sCT)的临床可行性。该模型使用基于帧的对比增强T1加权MR图像以及为GKRS规划采集的54名训练对象的相应CT切片进行训练。该模型前瞻性地应用于43例患者的60个病变,包括脑膜瘤和垂体腺瘤等良性肿瘤、脑转移瘤以及不同部位的血管疾病,以评估该模型及其应用。我们评估了sCT,并比较了仅用MR制定的治疗计划(TMR 10计划)、MR和真实CT(rCT;与rCT卷积[Conv-rCT]计划)以及MR和合成CT(与sCT卷积[Conv-sCT]计划)之间的差异。43个sCT的平均绝对误差(MAE)为107.35±16.47亨氏单位。TMR 10治疗计划与Conv-sCT和Conv-rCT制定的计划有显著差异。然而,Conv-sCT和Conv-rCT计划相似。本研究表明基于sCT的深度学习在GKRS中的实际适用性。我们的结果支持在使用GKRS规划MR且无辐射暴露的情况下,在考虑组织辐射衰减的同时制定GKRS治疗计划的可能性。

相似文献

2
Synthetic CT for gamma knife radiosurgery dose calculation: A feasibility study.
Phys Med. 2024 Sep;125:104504. doi: 10.1016/j.ejmp.2024.104504. Epub 2024 Aug 27.
3
MR-based synthetic CT generation using a deep convolutional neural network method.
Med Phys. 2017 Apr;44(4):1408-1419. doi: 10.1002/mp.12155. Epub 2017 Mar 21.
5
A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study.
Front Oncol. 2023 Nov 28;13:1279750. doi: 10.3389/fonc.2023.1279750. eCollection 2023.
10
A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases.
Radiother Oncol. 2022 Nov;176:31-38. doi: 10.1016/j.radonc.2022.08.028. Epub 2022 Sep 5.

引用本文的文献

1
CT synthesis with deep learning for MR-only radiotherapy planning: a review.
Biomed Eng Lett. 2024 Sep 26;14(6):1259-1278. doi: 10.1007/s13534-024-00430-y. eCollection 2024 Nov.
2
Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps.
Phys Imaging Radiat Oncol. 2024 Sep 26;32:100652. doi: 10.1016/j.phro.2024.100652. eCollection 2024 Oct.
3
Clinical Performance Evaluation of an Artificial Intelligence-Powered Amyloid Brain PET Quantification Method.
Nucl Med Mol Imaging. 2024 Jun;58(4):246-254. doi: 10.1007/s13139-024-00861-6. Epub 2024 May 2.
4
Machine Learning for Medical Image Translation: A Systematic Review.
Bioengineering (Basel). 2023 Sep 12;10(9):1078. doi: 10.3390/bioengineering10091078.

本文引用的文献

6
MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks.
Med Phys. 2019 Aug;46(8):3565-3581. doi: 10.1002/mp.13617. Epub 2019 Jun 12.
7
MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach.
Radiother Oncol. 2019 Jul;136:56-63. doi: 10.1016/j.radonc.2019.03.026. Epub 2019 Apr 11.
8
MR-based treatment planning in radiation therapy using a deep learning approach.
J Appl Clin Med Phys. 2019 Mar;20(3):105-114. doi: 10.1002/acm2.12554.
9
Image Segmentation, Registration and Characterization in R with SimpleITK.
J Stat Softw. 2018 Aug;86. doi: 10.18637/jss.v086.i08. Epub 2018 Sep 4.
10
Medical Image Synthesis with Deep Convolutional Adversarial Networks.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验