Ren Huaizheng, Li Sai, Wang Bo, Zhang Yanyan, Wang Tian, Lv Qiang, Zhang Xiangyu, Wang Lei, Han Xiao, Jin Fan, Bao Changyuan, Yan Pengfei, Zhang Nan, Wang Dianlong, Cheng Tao, Liu Huakun, Dou Shixue
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.
Adv Mater. 2023 Jan;35(1):e2208237. doi: 10.1002/adma.202208237. Epub 2022 Nov 14.
Growth of dendrites, the low plating/stripping efficiency of Zn anodes, and the high freezing point of aqueous electrolytes hinder the practical application of aqueous Zn-ion batteries. Here, a zwitterionic osmolyte-based molecular crowding electrolyte is presented, by adding betaine (Bet, a by-product from beet plant) to the aqueous electrolyte, to solve the abovementioned problems. Substantive verification tests, density functional theory calculations, and ab initio molecular dynamics simulations consistently reveal that side reactions and growth of Zn dendrites are restrained because Bet can break Zn solvation and regulate oriented 2D Zn deposition. The Bet/ZnSO electrolyte enables superior reversibility in a Zn-Cu half-cell to achieve a high Coulombic efficiency >99.9% for 900 cycles (≈1800 h), and dendrite-free Zn plating/stripping in Zn-Zn cells for 4235 h at 0.5 mA cm and 0.5 mAh cm . Furthermore, a high concentration of Bet lowers the freezing point of the electrolyte to -92 °C via the molecular-crowding effect, which ensures the stable operation of the aqueous batteries at -30 °C. This innovative concept of such a molecular crowding electrolyte will inject new vitality into the development of multifunctional aqueous electrolytes.
枝晶生长、锌阳极较低的电镀/剥离效率以及水系电解质的高冰点阻碍了水系锌离子电池的实际应用。在此,通过向水系电解质中添加甜菜碱(Bet,一种甜菜植物的副产品),提出了一种基于两性离子渗透剂的分子拥挤电解质,以解决上述问题。大量验证测试、密度泛函理论计算和从头算分子动力学模拟一致表明,由于甜菜碱可以破坏锌的溶剂化并调节二维锌的定向沉积,因此抑制了副反应和锌枝晶的生长。Bet/ZnSO电解质在锌-铜半电池中具有优异的可逆性,在900次循环(约1800小时)中实现了>99.9%的高库仑效率,并且在锌-锌电池中,在0.5 mA cm和0.5 mAh cm条件下,4235小时无枝晶锌电镀/剥离。此外,高浓度的甜菜碱通过分子拥挤效应将电解质的冰点降低至-92°C,这确保了水系电池在-30°C下的稳定运行。这种分子拥挤电解质的创新概念将为多功能水系电解质的发展注入新的活力。