Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA.
Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695, USA.
Sci Adv. 2022 Oct 14;8(41):eabp9906. doi: 10.1126/sciadv.abp9906.
Capturing cell-to-cell signals in a three-dimensional (3D) environment is key to studying cellular functions. A major challenge in the current culturing methods is the lack of accurately capturing multicellular 3D environments. In this study, we established a framework for 3D bioprinting plant cells to study cell viability, cell division, and cell identity. We established long-term cell viability for bioprinted Arabidopsis and soybean cells. To analyze the generated large image datasets, we developed a high-throughput image analysis pipeline. Furthermore, we showed the cell cycle reentry of bioprinted cells for which the timing coincides with the induction of core cell cycle genes and regeneration-related genes, ultimately leading to microcallus formation. Last, the identity of bioprinted Arabidopsis root cells expressing endodermal markers was maintained for longer periods. The framework established here paves the way for a general use of 3D bioprinting for studying cellular reprogramming and cell cycle reentry toward tissue regeneration.
在三维(3D)环境中捕获细胞间信号对于研究细胞功能至关重要。当前培养方法的主要挑战是缺乏对多细胞 3D 环境的准确捕获。在这项研究中,我们建立了一个用于 3D 生物打印植物细胞的框架,以研究细胞活力、细胞分裂和细胞身份。我们建立了生物打印的拟南芥和大豆细胞的长期细胞活力。为了分析生成的大型图像数据集,我们开发了一个高通量图像分析管道。此外,我们展示了生物打印细胞的细胞周期再进入,其时间与核心细胞周期基因和与再生相关的基因的诱导相吻合,最终导致微结瘤的形成。最后,表达内胚层标记的生物打印拟南芥根细胞的身份保持更长时间。这里建立的框架为 3D 生物打印在研究细胞重编程和细胞周期再进入以实现组织再生方面的广泛应用铺平了道路。