Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.
Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
Biophys J. 2022 Dec 6;121(23):4702-4713. doi: 10.1016/j.bpj.2022.10.017. Epub 2022 Oct 14.
Structural maintenance of chromosome (SMC) complexes form ring-like structures through exceptional elongated coiled-coils (CCs). Recent studies found that variable CC conformations, including open and collapsed forms, which might result from discontinuities in the CC, facilitate the diverse functions of SMCs in DNA organization. However, a detailed description of the SMC CC architecture is still missing. Here, we study the structural composition and mechanical properties of SMC proteins with optical tweezers unfolding experiments using the isolated Psm3 CC as a model system. We find a comparatively unstable protein with three unzipping intermediates, which we could directly assign to CC features by crosslinking experiments and state-of-the-art prediction software. Particularly, the CC elbow is shown to be a flexible, potentially non-structured feature, which divides the CC into sections, induces a pairing shift from one CC strand to the other and could facilitate large-scale conformational changes, most likely via thermal fluctuations of the flanking CC sections. A replacement of the elbow amino acids hinders folding of the consecutive CC region and frequently leads to non-native misalignments, revealing the elbow as a guide for proper folding. Additional in vivo manipulation of the elbow flexibility resulted in impaired cohesin complexes, which directly link the sensitive CC architecture to the biological function of cohesin.
染色体结构维持(SMC)复合物通过特殊的长卷曲螺旋(CC)形成环状结构。最近的研究发现,CC 构象的可变性,包括开放和塌陷形式,可能是由于 CC 中的不连续性造成的,这促进了 SMC 在 DNA 组织中的多种功能。然而,SMC CC 结构的详细描述仍然缺失。在这里,我们使用分离的 Psm3 CC 作为模型系统,通过光学镊子展开实验研究 SMC 蛋白的结构组成和力学特性。我们发现一种相对不稳定的蛋白质,有三个解拉链中间体,我们可以通过交联实验和最先进的预测软件直接将其分配给 CC 特征。特别是,CC 肘是一个灵活的、潜在的非结构特征,它将 CC 分成几个部分,诱导从一个 CC 链到另一个 CC 链的配对转移,并可以促进大规模的构象变化,很可能是通过侧翼 CC 部分的热波动。替换肘氨基酸会阻碍连续 CC 区域的折叠,并经常导致非天然的错位,这表明肘是正确折叠的指南。对肘灵活性的额外体内操作导致黏连蛋白复合物受损,这直接将敏感的 CC 结构与黏连蛋白的生物学功能联系起来。