Suppr超能文献

双层磁等离子体卫星纳米组装用于外切酶扩增的妥布霉素的 SERS 检测。

Bilayer magnetic-plasmonic satellite nanoassemblies for SERS detection of tobramycin with exonuclease amplification.

机构信息

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.

出版信息

Biosens Bioelectron. 2022 Dec 15;218:114789. doi: 10.1016/j.bios.2022.114789. Epub 2022 Oct 8.

Abstract

Nanoscale assemblies designed for trace analyte detection typically require a complex fabrication process. Here, we prepare magnetic nanoparticle (FeO)-gold nanoparticle (AuNP)-gold nanostar (AuNS) bilayer magnetic-plasmonic satellite nanoassemblies (BMPSNs) for ultrasensitive detection of tobramycin (TOB). BMPSNs are constructed through seed-mediated growth and complementary DNA hybridization, combining magnetic separation and surface-enhanced Raman scattering (SERS) activities. AuNP is in situ growth on the surface of FeO to form the monolayer satellite assemblies. Partially complementary double-stranded DNA (DNA1/DNA2) is modified onto the surface of the first layer satellite AuNP. TOB aptamer (Apt) and fully complementary DNA (cDNA) form the duplex DNA. In the presence of TOB, cDNA of TOB Apt is replaced by TOB/TOB Apt, which can hybridize with DNA2 modified on the surface of FeO@AuNP-DNA1/DNA2 and further triggers exonuclease III cyclic amplification to obtain FeO@AuNP-DNA1. Finally, FeO@AuNP-DNA1 can assemble with AuNS@4-MBA-DNA3 through DNA hybridization to form BMPSNs. Thanks to excellent magnetic separation, exonuclease amplification and huge SERS enhancement of multiple hot spots, the limit of detection can achieve as low as 0.44 fg/mL of TOB, which is more sensitive than the previously reported methods. In addition, this method can be applied to TOB detection in actual samples with good recoveries and without interference by other antibiotics. The proposed method can be easily extended to sensitive detection of other targets by replacing the corresponding aptamers, paving a new avenue for food safety and environment monitoring.

摘要

用于痕量分析物检测的纳米级组装体通常需要复杂的制造工艺。在这里,我们制备了磁性纳米颗粒 (FeO)-金纳米颗粒 (AuNP)-金纳米星 (AuNS) 双层磁等离子卫星纳米组装体 (BMPSNs),用于妥布霉素 (TOB) 的超灵敏检测。BMPSNs 通过种子介导的生长和互补 DNA 杂交构建,结合了磁分离和表面增强拉曼散射 (SERS) 活性。AuNP 原位生长在 FeO 表面上形成单层卫星组装体。部分互补双链 DNA (DNA1/DNA2) 修饰在第一层卫星 AuNP 的表面上。TOB 适体 (Apt) 和完全互补 DNA (cDNA) 形成双链 DNA。在存在 TOB 的情况下,TOB Apt 的 cDNA 被 TOB/TOB Apt 取代,其可以与 FeO@AuNP-DNA1/DNA2 表面修饰的 DNA2 杂交,并进一步触发外切酶 III 循环扩增以获得 FeO@AuNP-DNA1。最后,FeO@AuNP-DNA1 可以通过 DNA 杂交与 AuNS@4-MBA-DNA3 组装形成 BMPSNs。由于出色的磁分离、外切酶扩增和多个热点的巨大 SERS 增强,TOB 的检测限可低至 0.44 fg/mL,比以前报道的方法更灵敏。此外,该方法可用于实际样品中 TOB 的检测,回收率良好,且不受其他抗生素的干扰。通过替换相应的适体,该方法可以很容易地扩展到其他目标的灵敏检测,为食品安全和环境监测开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验