Gomes Ryan G, Vwalika Bellington, Lee Chace, Willis Angelica, Sieniek Marcin, Price Joan T, Chen Christina, Kasaro Margaret P, Taylor James A, Stringer Elizabeth M, McKinney Scott Mayer, Sindano Ntazana, Dahl George E, Goodnight William, Gilmer Justin, Chi Benjamin H, Lau Charles, Spitz Terry, Saensuksopa T, Liu Kris, Tiyasirichokchai Tiya, Wong Jonny, Pilgrim Rory, Uddin Akib, Corrado Greg, Peng Lily, Chou Katherine, Tse Daniel, Stringer Jeffrey S A, Shetty Shravya
Google Health, Palo Alto, CA USA.
Department of Obstetrics and Gynaecology, University of Zambia School of Medicine, Lusaka, Zambia.
Commun Med (Lond). 2022 Oct 11;2:128. doi: 10.1038/s43856-022-00194-5. eCollection 2022.
Fetal ultrasound is an important component of antenatal care, but shortage of adequately trained healthcare workers has limited its adoption in low-to-middle-income countries. This study investigated the use of artificial intelligence for fetal ultrasound in under-resourced settings.
Blind sweep ultrasounds, consisting of six freehand ultrasound sweeps, were collected by sonographers in the USA and Zambia, and novice operators in Zambia. We developed artificial intelligence (AI) models that used blind sweeps to predict gestational age (GA) and fetal malpresentation. AI GA estimates and standard fetal biometry estimates were compared to a previously established ground truth, and evaluated for difference in absolute error. Fetal malpresentation (non-cephalic vs cephalic) was compared to sonographer assessment. On-device AI model run-times were benchmarked on Android mobile phones.
Here we show that GA estimation accuracy of the AI model is non-inferior to standard fetal biometry estimates (error difference -1.4 ± 4.5 days, 95% CI -1.8, -0.9, = 406). Non-inferiority is maintained when blind sweeps are acquired by novice operators performing only two of six sweep motion types. Fetal malpresentation AUC-ROC is 0.977 (95% CI, 0.949, 1.00, = 613), sonographers and novices have similar AUC-ROC. Software run-times on mobile phones for both diagnostic models are less than 3 s after completion of a sweep.
The gestational age model is non-inferior to the clinical standard and the fetal malpresentation model has high AUC-ROCs across operators and devices. Our AI models are able to run on-device, without internet connectivity, and provide feedback scores to assist in upleveling the capabilities of lightly trained ultrasound operators in low resource settings.
胎儿超声检查是产前护理的重要组成部分,但在中低收入国家,缺乏训练有素的医护人员限制了其应用。本研究调查了在资源匮乏环境中使用人工智能进行胎儿超声检查的情况。
美国和赞比亚的超声医师以及赞比亚的新手操作员收集了由六次徒手超声扫描组成的盲扫超声图像。我们开发了利用盲扫图像预测孕周(GA)和胎儿胎位异常的人工智能(AI)模型。将AI的GA估计值和标准胎儿生物测量估计值与先前确定的地面真值进行比较,并评估绝对误差的差异。将胎儿胎位异常(非头位与头位)与超声医师的评估结果进行比较。在安卓手机上对设备上的AI模型运行时间进行了基准测试。
我们在此表明,AI模型的GA估计准确性不低于标准胎儿生物测量估计值(误差差异为-1.4±4.5天,95%CI为-1.8,-0.9,n=406)。当仅执行六种扫描运动类型中的两种的新手操作员获取盲扫图像时,非劣效性得以维持。胎儿胎位异常的AUC-ROC为0.977(95%CI,0.949,1.00,n=613),超声医师和新手的AUC-ROC相似。两种诊断模型在手机上的软件运行时间在扫描完成后均小于3秒。
孕周模型不劣于临床标准,胎儿胎位异常模型在不同操作员和设备上具有较高的AUC-ROC。我们的AI模型能够在设备上运行,无需互联网连接,并提供反馈分数,以帮助提升资源匮乏环境中训练不足的超声操作员的能力。