Suppr超能文献

基于超声图像的机器学习用于准确估计胎儿孕周。

Machine learning for accurate estimation of fetal gestational age based on ultrasound images.

作者信息

Lee Lok Hin, Bradburn Elizabeth, Craik Rachel, Yaqub Mohammad, Norris Shane A, Ismail Leila Cheikh, Ohuma Eric O, Barros Fernando C, Lambert Ann, Carvalho Maria, Jaffer Yasmin A, Gravett Michael, Purwar Manorama, Wu Qingqing, Bertino Enrico, Munim Shama, Min Aung Myat, Bhutta Zulfiqar, Villar Jose, Kennedy Stephen H, Noble J Alison, Papageorghiou Aris T

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.

Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.

出版信息

NPJ Digit Med. 2023 Mar 9;6(1):36. doi: 10.1038/s41746-023-00774-2.

Abstract

Accurate estimation of gestational age is an essential component of good obstetric care and informs clinical decision-making throughout pregnancy. As the date of the last menstrual period is often unknown or uncertain, ultrasound measurement of fetal size is currently the best method for estimating gestational age. The calculation assumes an average fetal size at each gestational age. The method is accurate in the first trimester, but less so in the second and third trimesters as growth deviates from the average and variation in fetal size increases. Consequently, fetal ultrasound late in pregnancy has a wide margin of error of at least ±2 weeks' gestation. Here, we utilise state-of-the-art machine learning methods to estimate gestational age using only image analysis of standard ultrasound planes, without any measurement information. The machine learning model is based on ultrasound images from two independent datasets: one for training and internal validation, and another for external validation. During validation, the model was blinded to the ground truth of gestational age (based on a reliable last menstrual period date and confirmatory first-trimester fetal crown rump length). We show that this approach compensates for increases in size variation and is even accurate in cases of intrauterine growth restriction. Our best machine-learning based model estimates gestational age with a mean absolute error of 3.0 (95% CI, 2.9-3.2) and 4.3 (95% CI, 4.1-4.5) days in the second and third trimesters, respectively, which outperforms current ultrasound-based clinical biometry at these gestational ages. Our method for dating the pregnancy in the second and third trimesters is, therefore, more accurate than published methods.

摘要

准确估算孕周是优质产科护理的重要组成部分,并贯穿整个孕期为临床决策提供依据。由于末次月经日期往往未知或不确定,目前超声测量胎儿大小是估算孕周的最佳方法。该计算方法假定每个孕周的胎儿大小为平均值。此方法在孕早期较为准确,但在孕中期和孕晚期准确性较低,因为胎儿生长偏离平均水平且胎儿大小差异增大。因此,孕晚期的胎儿超声检查误差幅度至少为±2周。在此,我们利用最先进的机器学习方法,仅通过标准超声平面的图像分析来估算孕周,无需任何测量信息。该机器学习模型基于两个独立数据集的超声图像:一个用于训练和内部验证,另一个用于外部验证。在验证过程中,模型对孕周的真实情况(基于可靠的末次月经日期和孕早期确认的胎儿头臀长度)不知情。我们表明,这种方法弥补了大小差异的增加,甚至在胎儿宫内生长受限的情况下也很准确。我们基于机器学习的最佳模型在孕中期和孕晚期估算孕周的平均绝对误差分别为3.0(95%置信区间,2.9 - 3.2)天和4.3(95%置信区间,4.1 - 4.5)天,在这些孕周时优于当前基于超声的临床生物测量法。因此,我们在孕中期和孕晚期确定孕周的方法比已发表的方法更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/9998590/b5301bfc2d8a/41746_2023_774_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验