Suppr超能文献

结构-功能研究可以提高黏连蛋白-结构域相互作用的结合亲和力,用于多蛋白组装。

Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies.

机构信息

CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.

UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

出版信息

Int J Biol Macromol. 2023 Jan 1;224:55-67. doi: 10.1016/j.ijbiomac.2022.10.102. Epub 2022 Oct 15.

Abstract

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.

摘要

纤维小体是一种复杂的多酶结构,由许多厌氧微生物分泌,用于高效降解木质纤维素底物。它由多个催化和非催化成分组成,这些成分通过酶携带的 dockerin(Doc)模块与主要支架蛋白中存在的重复粘着(cohesin)(Coh)模块之间的高亲和力蛋白-蛋白相互作用组装。在一些纤维小体中,主要支架蛋白可以与衔接支架蛋白和细胞锚定支架蛋白相互作用,从而构建越来越复杂的结构。瘤胃菌属的纤维小体系统是迄今为止描述最复杂的系统之一。大量不同的 Doc 特异性导致了一种复杂的结构,仅通过单一结合模式的 III 型 Coh-Doc 相互作用组装而成。然而,一组 III 型 Doc 表现出与经典双结合模式 Coh-Doc 相互作用相关的某些特征。在这里,描述了与锚定支架蛋白 ScaE 的 Coh 结合的适配器支架蛋白 ScaH Doc 的结构。与以前在 R. flavefaciens 中描述的 III 型相互作用不同,该复合物以双结合模式相互作用。还确定了确定 Coh 识别的关键残基。该信息用于进行基于结构的蛋白质工程,以改变结合表面的静电轮廓,并提高两个模块之间的亲和力。结果表明,配体结合表面上的残基性质在 Coh 识别中起着重要作用,并且可以通过合理设计操纵 Coh-Doc 亲和力,这是使用定制的 Coh-Doc 相互作用创建设计纤维小体或其他基于亲和力的技术的关键特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验