Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
Centre de Recherches Médicales des Lambaréné, CERMEL, Lambaréné, Gabon.
Am J Trop Med Hyg. 2022 Oct 17;107(5):1047-1054. doi: 10.4269/ajtmh.22-0276. Print 2022 Nov 14.
Conventional microscopy is the standard procedure for the diagnosis of schistosomiasis, despite its limited sensitivity, reliance on skilled personnel, and the fact that it is error prone. Here, we report the performance of the innovative (semi-)automated Schistoscope 5.0 for optical digital detection and quantification of Schistosoma haematobium eggs in urine, using conventional microscopy as the reference standard. At baseline, 487 participants in a rural setting in Nigeria were assessed, of which 166 (34.1%) tested S. haematobium positive by conventional microscopy. Captured images from the Schistoscope 5.0 were analyzed manually (semiautomation) and by an artificial intelligence (AI) algorithm (full automation). Semi- and fully automated digital microscopy showed comparable sensitivities of 80.1% (95% confidence interval [CI]: 73.2-86.0) and 87.3% (95% CI: 81.3-92.0), but a significant difference in specificity of 95.3% (95% CI: 92.4-97.4) and 48.9% (95% CI: 43.3-55.0), respectively. Overall, estimated egg counts of semi- and fully automated digital microscopy correlated significantly with the egg counts of conventional microscopy (r = 0.90 and r = 0.80, respectively, P < 0.001), although the fully automated procedure generally underestimated the higher egg counts. In 38 egg positive cases, an additional urine sample was examined 10 days after praziquantel treatment, showing a similar cure rate and egg reduction rate when comparing conventional microscopy with semiautomated digital microscopy. In this first extensive field evaluation, we found the semiautomated Schistoscope 5.0 to be a promising tool for the detection and monitoring of S. haematobium infection, although further improvement of the AI algorithm for full automation is required.
传统显微镜检查是诊断血吸虫病的标准程序,尽管其灵敏度有限,依赖于熟练的人员,并且容易出错。在这里,我们报告了创新的(半自动)Schistoscope 5.0 用于光学数字检测和定量检测尿液中的埃及血吸虫卵的性能,以传统显微镜检查作为参考标准。在基线时,对尼日利亚农村地区的 487 名参与者进行了评估,其中 166 名(34.1%)通过传统显微镜检查检测到埃及血吸虫阳性。Schistoscope 5.0 捕获的图像由人工(半自动)和人工智能(AI)算法(全自动)进行分析。半自动和全自动数字显微镜检查显示出相当的敏感性,分别为 80.1%(95%置信区间[CI]:73.2-86.0)和 87.3%(95%CI:81.3-92.0),但特异性有显著差异,分别为 95.3%(95%CI:92.4-97.4)和 48.9%(95%CI:43.3-55.0)。总的来说,半自动和全自动数字显微镜检查的估计卵数与传统显微镜检查的卵数显著相关(r = 0.90 和 r = 0.80,分别,P < 0.001),尽管全自动程序通常低估了较高的卵数。在 38 例虫卵阳性病例中,在吡喹酮治疗后 10 天检查了另一份尿液样本,比较传统显微镜检查和半自动数字显微镜检查时,治愈率和虫卵减少率相似。在这项首次广泛的现场评估中,我们发现半自动 Schistoscope 5.0 是一种有前途的检测和监测埃及血吸虫感染的工具,尽管需要进一步改进 AI 算法以实现全自动。
Sultan Qaboos Univ Med J. 2018-8
PLoS Negl Trop Dis. 2025-8-4
Int J Environ Res Public Health. 2024-12-31
Philos Trans R Soc Lond B Biol Sci. 2023-10-9
Micromachines (Basel). 2022-4-19
Trop Med Infect Dis. 2021-6-22
Travel Med Infect Dis. 2019
Nat Rev Dis Primers. 2018-8-9
Lancet Public Health. 2017-8
Am J Trop Med Hyg. 2017-6