Rubio Maturana Carles, de Oliveira Allisson Dantas, Zarzuela Francesc, Mediavilla Alejandro, Martínez-Vallejo Patricia, Silgado Aroa, Goterris Lidia, Muixí Marc, Abelló Alberto, Veiga Anna, López-Codina Daniel, Sulleiro Elena, Sayrol Elisa, Joseph-Munné Joan
Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain.
Department of Microbiology and Genetics, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
Int J Environ Res Public Health. 2024 Dec 31;22(1):47. doi: 10.3390/ijerph22010047.
The gold standard diagnosis for malaria is the microscopic visualization of blood smears to identify parasites, although it is an expert-dependent technique and could trigger diagnostic errors. Artificial intelligence (AI) tools based on digital image analysis were postulated as a suitable supportive alternative for automated malaria diagnosis. A diagnostic evaluation of the AI-based system was conducted in the reference laboratory of the International Health Unit Drassanes-Vall d'Hebron in Barcelona, Spain. is an automated device for the diagnosis of malaria by using artificial intelligence image analysis tools and a robotized microscope. A total of 54 Giemsa-stained thick blood smear samples from travelers and migrants coming from endemic areas were employed and analyzed to determine the presence/absence of parasites. AI diagnostic results were compared with expert light microscopy gold standard method results. The AI system shows 81.25% sensitivity and 92.11% specificity when compared with the conventional light microscopy gold standard method. Overall, 48/54 (88.89%) samples were correctly identified [13/16 (81.25%) as positives and 35/38 (92.11%) as negatives]. The mean time of the AI system to determine a positive malaria diagnosis was 3 min and 48 s, with an average of 7.38 FoV analyzed per sample. Statistical analyses showed the Kappa Index = 0.721, demonstrating a satisfactory correlation between the gold standard diagnostic method and results. The AI system demonstrated reliable results for malaria diagnosis in a reference laboratory in Barcelona. Validation in malaria-endemic regions will be the next step to evaluate its potential in resource-poor settings.
疟疾的金标准诊断方法是通过显微镜观察血涂片来识别寄生虫,尽管这是一项依赖专业人员的技术,且可能引发诊断错误。基于数字图像分析的人工智能(AI)工具被认为是自动疟疾诊断的合适辅助手段。在西班牙巴塞罗那国际卫生单位Drassanes-Vall d'Hebron的参考实验室对基于AI的系统进行了诊断评估。是一种利用人工智能图像分析工具和自动化显微镜诊断疟疾的自动化设备。共使用并分析了54份来自流行地区旅行者和移民的吉姆萨染色厚血涂片样本,以确定是否存在寄生虫。将AI诊断结果与专家光学显微镜金标准方法的结果进行比较。与传统光学显微镜金标准方法相比,AI系统的灵敏度为81.25%,特异性为92.11%。总体而言,48/54(88.89%)的样本被正确识别[13/16(81.25%)为阳性,35/38(92.11%)为阴性]。AI系统确定疟疾阳性诊断的平均时间为3分48秒,每个样本平均分析7.38个视野。统计分析显示kappa指数=0.721,表明金标准诊断方法与结果之间具有良好的相关性。在巴塞罗那的一个参考实验室中,AI系统在疟疾诊断方面显示出可靠的结果。下一步将在疟疾流行地区进行验证,以评估其在资源匮乏地区的潜力。