Oyibo Prosper, Meulah Brice, Agbana Tope, van Lieshout Lisette, Oyibo Wellington, Vdovin Gleb, Diehl Jan-Carel
Delft Center for Systems and Control, Delft University of Technology, 2628 CN, Delft, The Netherlands.
School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
Sci Rep. 2025 Jul 1;15(1):21495. doi: 10.1038/s41598-025-02755-9.
In this work, we developed an automated system for the detection and classification of soil-transmitted helminths (STH) and Schistosoma (S.) mansoni eggs in microscopic images of fecal smears. We assembled an STH and S. mansoni dataset comprising over 3,000 field-of-view (FOV) images containing parasite eggs, extracted from more than 300 fecal smear prepared using the Kato-Katz technique. These images were acquired using Schistoscope-a cost-effective automated digital microscope. After annotating the STH and S. mansoni eggs, we employed a transfer learning approach to train an EfficientDet deep learning model, using 70% of the dataset for training, 20% for validation, and 10% for testing. The developed model successfully identified STH and S. mansoni eggs in the FOV images, achieving weighted average scores of [Formula: see text] Precision, [Formula: see text] Sensitivity, [Formula: see text] Specificity, and [Formula: see text] F-Score across four classes of helminths (A. lumbricoides, T. trichiura, hookworm, and S. mansoni). Our system highlights the potential of the Schistoscope, enhanced with artificial intelligence, for detecting STH and S. mansoni infections in remote, resource-limited settings and for supporting the monitoring and evaluation of neglected tropical disease (NTD) control programs.
在这项工作中,我们开发了一个自动化系统,用于在粪便涂片的显微图像中检测和分类土源性蠕虫(STH)和曼氏血吸虫(S. mansoni)卵。我们收集了一个包含超过3000个视野(FOV)图像的STH和曼氏血吸虫数据集,这些图像包含寄生虫卵,是从使用加藤-卡茨技术制备的300多张粪便涂片中提取的。这些图像是使用Schistoscope(一种经济高效的自动化数字显微镜)采集的。在对STH和曼氏血吸虫卵进行标注后,我们采用迁移学习方法来训练一个EfficientDet深度学习模型,使用70%的数据集进行训练,20%用于验证,10%用于测试。所开发的模型成功地在FOV图像中识别出STH和曼氏血吸虫卵,在四类蠕虫(蛔虫、鞭虫、钩虫和曼氏血吸虫)中实现了[公式:见原文]精度、[公式:见原文]灵敏度、[公式:见原文]特异性和[公式:见原文]F值的加权平均分数。我们的系统突出了配备人工智能的Schistoscope在偏远、资源有限的环境中检测STH和曼氏血吸虫感染以及支持被忽视热带病(NTD)控制项目监测和评估方面的潜力。
Cochrane Database Syst Rev. 2022-6-21
J Med Imaging (Bellingham). 2023-7
PeerJ Comput Sci. 2022-8-17
Micromachines (Basel). 2022-4-19
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11