文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的粪便涂片图像中土壤传播的蠕虫和曼氏血吸虫卵的自动检测与多类分类

Deep learning-based automated detection and multiclass classification of soil-transmitted helminths and Schistosoma mansoni eggs in fecal smear images.

作者信息

Oyibo Prosper, Meulah Brice, Agbana Tope, van Lieshout Lisette, Oyibo Wellington, Vdovin Gleb, Diehl Jan-Carel

机构信息

Delft Center for Systems and Control, Delft University of Technology, 2628 CN, Delft, The Netherlands.

School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.

出版信息

Sci Rep. 2025 Jul 1;15(1):21495. doi: 10.1038/s41598-025-02755-9.


DOI:10.1038/s41598-025-02755-9
PMID:40595844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12219859/
Abstract

In this work, we developed an automated system for the detection and classification of soil-transmitted helminths (STH) and Schistosoma (S.) mansoni eggs in microscopic images of fecal smears. We assembled an STH and S. mansoni dataset comprising over 3,000 field-of-view (FOV) images containing parasite eggs, extracted from more than 300 fecal smear prepared using the Kato-Katz technique. These images were acquired using Schistoscope-a cost-effective automated digital microscope. After annotating the STH and S. mansoni eggs, we employed a transfer learning approach to train an EfficientDet deep learning model, using 70% of the dataset for training, 20% for validation, and 10% for testing. The developed model successfully identified STH and S. mansoni eggs in the FOV images, achieving weighted average scores of [Formula: see text] Precision, [Formula: see text] Sensitivity, [Formula: see text] Specificity, and [Formula: see text] F-Score across four classes of helminths (A. lumbricoides, T. trichiura, hookworm, and S. mansoni). Our system highlights the potential of the Schistoscope, enhanced with artificial intelligence, for detecting STH and S. mansoni infections in remote, resource-limited settings and for supporting the monitoring and evaluation of neglected tropical disease (NTD) control programs.

摘要

在这项工作中,我们开发了一个自动化系统,用于在粪便涂片的显微图像中检测和分类土源性蠕虫(STH)和曼氏血吸虫(S. mansoni)卵。我们收集了一个包含超过3000个视野(FOV)图像的STH和曼氏血吸虫数据集,这些图像包含寄生虫卵,是从使用加藤-卡茨技术制备的300多张粪便涂片中提取的。这些图像是使用Schistoscope(一种经济高效的自动化数字显微镜)采集的。在对STH和曼氏血吸虫卵进行标注后,我们采用迁移学习方法来训练一个EfficientDet深度学习模型,使用70%的数据集进行训练,20%用于验证,10%用于测试。所开发的模型成功地在FOV图像中识别出STH和曼氏血吸虫卵,在四类蠕虫(蛔虫、鞭虫、钩虫和曼氏血吸虫)中实现了[公式:见原文]精度、[公式:见原文]灵敏度、[公式:见原文]特异性和[公式:见原文]F值的加权平均分数。我们的系统突出了配备人工智能的Schistoscope在偏远、资源有限的环境中检测STH和曼氏血吸虫感染以及支持被忽视热带病(NTD)控制项目监测和评估方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71de/12219859/e723e390021d/41598_2025_2755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71de/12219859/1540675c37ea/41598_2025_2755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71de/12219859/e723e390021d/41598_2025_2755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71de/12219859/1540675c37ea/41598_2025_2755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71de/12219859/e723e390021d/41598_2025_2755_Fig2_HTML.jpg

相似文献

[1]
Deep learning-based automated detection and multiclass classification of soil-transmitted helminths and Schistosoma mansoni eggs in fecal smear images.

Sci Rep. 2025-7-1

[2]
Detecting soil-transmitted helminth and Schistosoma mansoni eggs in Kato-Katz stool smear microscopy images: A comprehensive in- and out-of-distribution evaluation of YOLOv7 variants.

PLoS Negl Trop Dis. 2025-7-3

[3]
Affordable artificial intelligence-based digital pathology for neglected tropical diseases: A proof-of-concept for the detection of soil-transmitted helminths and Schistosoma mansoni eggs in Kato-Katz stool thick smears.

PLoS Negl Trop Dis. 2022-6

[4]
AI-supported versus manual microscopy of Kato-Katz smears for diagnosis of soil-transmitted helminth infections in a primary healthcare setting.

Sci Rep. 2025-6-27

[5]
Comparison of individual and pooled stool samples for the assessment of intensity of Schistosoma mansoni and soil-transmitted helminth infections using the Kato-Katz technique.

Parasit Vectors. 2015-9-24

[6]
Interventions to improve water, sanitation, and hygiene for preventing soil-transmitted helminth infection.

Cochrane Database Syst Rev. 2022-6-21

[7]
A cross-sectional study on schistosomiasis and soil-transmitted helminths in Mbita district, western Kenya using different copromicroscopic techniques.

Parasit Vectors. 2016-2-16

[8]
Artificial intelligence-based digital pathology for the detection and quantification of soil-transmitted helminths eggs.

PLoS Negl Trop Dis. 2024-9

[9]
Prevalence and distribution of soil-transmitted helminth infections in Nigerian children: a systematic review and meta-analysis.

Infect Dis Poverty. 2018-7-9

[10]
Intestinal schistosomiasis and geohelminths of Ukara Island, North-Western Tanzania: prevalence, intensity of infection and associated risk factors among school children.

Parasit Vectors. 2014-12-23

本文引用的文献

[1]
Harnessing artificial intelligence microscopy to improve diagnostics for soil-transmitted helminthiasis and schistosomiasis: a review of recent advances and future pathways.

Curr Opin Infect Dis. 2024-10-1

[2]
Diagnosis of soil-transmitted helminth infections with digital mobile microscopy and artificial intelligence in a resource-limited setting.

PLoS Negl Trop Dis. 2024-4

[3]
Validation of artificial intelligence-based digital microscopy for automated detection of Schistosoma haematobium eggs in urine in Gabon.

PLoS Negl Trop Dis. 2024-2

[4]
An automated slide scanning system for membrane filter imaging in diagnosis of urogenital schistosomiasis.

J Microsc. 2024-4

[5]
Two-stage automated diagnosis framework for urogenital schistosomiasis in microscopy images from low-resource settings.

J Med Imaging (Bellingham). 2023-7

[6]
Performance Evaluation of the Schistoscope 5.0 for (Semi-)automated Digital Detection and Quantification of Schistosoma haematobium Eggs in Urine: A Field-based Study in Nigeria.

Am J Trop Med Hyg. 2022-11-14

[7]
Automatic recognition of parasitic products in stool examination using object detection approach.

PeerJ Comput Sci. 2022-8-17

[8]
Affordable artificial intelligence-based digital pathology for neglected tropical diseases: A proof-of-concept for the detection of soil-transmitted helminths and Schistosoma mansoni eggs in Kato-Katz stool thick smears.

PLoS Negl Trop Dis. 2022-6

[9]
Schistoscope: An Automated Microscope with Artificial Intelligence for Detection of Eggs in Resource-Limited Settings.

Micromachines (Basel). 2022-4-19

[10]
Combining collective and artificial intelligence for global health diseases diagnosis using crowdsourced annotated medical images.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索