Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Electron Microscopy Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
J Gen Physiol. 2022 Dec 5;154(12). doi: 10.1085/jgp.202213098. Epub 2022 Oct 18.
The membrane protein TMEM150C has been proposed to form a mechanosensitive ion channel that is required for normal proprioceptor function. Here, we examined whether expression of TMEM150C in neuroblastoma cells lacking Piezo1 is associated with the appearance of mechanosensitive currents. Using three different modes of mechanical stimuli, indentation, membrane stretch, and substrate deflection, we could not evoke mechanosensitive currents in cells expressing TMEM150C. We next asked if TMEM150C is necessary for the normal mechanosensitivity of cutaneous sensory neurons. We used an available mouse model in which the Tmem150c locus was disrupted through the insertion of a LacZ cassette with a splice acceptor that should lead to transcript truncation. Analysis of these mice indicated that ablation of the Tmem150c gene was not complete in sensory neurons of the dorsal root ganglia (DRG). Using a CRISPR/Cas9 strategy, we made a second mouse model in which a large part of the Tmem150c gene was deleted and established that these Tmem150c-/- mice completely lack TMEM150C protein in the DRGs. We used an ex vivo skin nerve preparation to characterize the mechanosenstivity of mechanoreceptors and nociceptors in the glabrous skin of the Tmem150c-/- mice. We found no quantitative alterations in the physiological properties of any type of cutaneous sensory fiber in Tmem150c-/- mice. Since it has been claimed that TMEM150C is required for normal proprioceptor function, we made a quantitative analysis of locomotion in Tmem150c-/- mice. Here again, we found no indication that there was altered gait in Tmem150c-/- mice compared to wild-type controls. In summary, we conclude that existing mouse models that have been used to investigate TMEM150C function in vivo are problematic. Furthermore, we could find no evidence that TMEM150C forms a mechanosensitive channel or that it is necessary for the normal mechanosensitivity of cutaneous sensory neurons.
跨膜蛋白 TMEM150C 被提出形成机械敏感离子通道,该通道对于正常本体感受器功能是必需的。在这里,我们研究了在缺乏 Piezo1 的神经母细胞瘤细胞中表达 TMEM150C 是否与机械敏感电流的出现有关。使用三种不同的机械刺激模式,压痕、膜拉伸和基底变形,我们无法在表达 TMEM150C 的细胞中引发机械敏感电流。接下来,我们询问 TMEM150C 是否是皮肤感觉神经元正常机械敏感性所必需的。我们使用了一种可用的小鼠模型,其中 Tmem150c 基因座通过插入带有拼接接受体的 LacZ 盒而被破坏,该接受体应该导致转录截断。对这些小鼠的分析表明,Tmem150c 基因在背根神经节(DRG)中的感觉神经元中的缺失并不完全。我们使用 CRISPR/Cas9 策略构建了第二个小鼠模型,其中 Tmem150c 基因的大部分被删除,并证实这些 Tmem150c-/- 小鼠在 DRG 中完全缺乏 TMEM150C 蛋白。我们使用离体皮肤神经制备物来表征 Tmem150c-/- 小鼠无毛皮肤中机械感受器和伤害感受器的机械敏感性。我们发现 Tmem150c-/- 小鼠的任何类型皮肤感觉纤维的生理特性都没有定量改变。由于据称 TMEM150C 是正常本体感受器功能所必需的,因此我们对 Tmem150c-/- 小鼠的运动进行了定量分析。在这里,我们再次发现 Tmem150c-/- 小鼠与野生型对照相比,步态没有改变的迹象。总之,我们得出结论,现有的用于体内研究 TMEM150C 功能的小鼠模型存在问题。此外,我们没有发现 TMEM150C 形成机械敏感通道或它是皮肤感觉神经元正常机械敏感性所必需的证据。