Suppr超能文献

WID-CIN 检测可识别患有 3 级宫颈上皮内瘤变和宫颈癌的女性,以及有患病风险的女性。

The WID-CIN test identifies women with, and at risk of, cervical intraepithelial neoplasia grade 3 and invasive cervical cancer.

机构信息

European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Milser Straße 10, 6060, Hall in Tirol, Austria.

Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020, Innsbruck, Austria.

出版信息

Genome Med. 2022 Oct 19;14(1):116. doi: 10.1186/s13073-022-01116-9.

Abstract

BACKGROUND

Cervical screening is transitioning from primary cytology to primary human papillomavirus (HPV) testing. HPV testing is highly sensitive but there is currently no high-specificity triage method for colposcopy referral to detect cervical intraepithelial neoplasia grade 3 or above (CIN3+) in women positive for high-risk (hr) HPV subtypes. An objective, automatable test that could accurately perform triage, independently of sample heterogeneity and age, is urgently required.

METHODS

We analyzed DNA methylation at ~850,000 CpG sites across the genome in a total of 1254 cervical liquid-based cytology (LBC) samples from cases of screen-detected histologically verified CIN1-3+ (98% hrHPV-positive) and population-based control women free from any cervical disease (100% hrHPV-positive). Samples were provided by a state-of-the-art population-based cohort biobank and consisted of (i) a discovery set of 170 CIN3+ cases and 202 hrHPV-positive/cytology-negative controls; (ii) a diagnostic validation set of 87 CIN3+, 90 CIN2, 166 CIN1, and 111 hrHPV-positive/cytology-negative controls; and (iii) a predictive validation set of 428 cytology-negative samples (418 hrHPV-positive) of which 210 were diagnosed with CIN3+ in the upcoming 1-4 years and 218 remained disease-free.

RESULTS

We developed the WID-CIN (Women's cancer risk IDentification-Cervical Intraepithelial Neoplasia) test, a DNA methylation signature consisting of 5000 CpG sites. The receiver operating characteristic area under the curve (AUC) in the independent diagnostic validation set was 0.92 (95% CI 0.88-0.96). At 75% specificity (≤CIN1), the overall sensitivity to detect CIN3+ is 89.7% (83.3-96.1) in all and 92.7% (85.9-99.6) and 65.6% (49.2-82.1) in women aged ≥30 and <30. In hrHPV-positive/cytology-negative samples in the predictive validation set, the WID-CIN detected 54.8% (48.0-61.5) cases developing 1-4 years after sample donation in all ages or 56.9% (47.6-66.2) and 53.5% (43.7-63.2) in ≥30 and <30-year-old women, at a specificity of 75%.

CONCLUSIONS

The WID-CIN test identifies the vast majority of hrHPV-positive women with current CIN3+ lesions. In the absence of cytologic abnormalities, a positive WID-CIN test result is likely to indicate a significantly increased risk of developing CIN3+ in the near future.

摘要

背景

宫颈筛查正从细胞学初级检查过渡到以人乳头瘤病毒(HPV)检测为主。HPV 检测具有很高的敏感性,但目前尚无高特异性的阴道镜转诊方法来检测高危型 HPV 亚型阳性的女性中宫颈上皮内瘤变 3 级或以上(CIN3+)病变。因此迫切需要一种客观、可自动化的检测方法,该方法可以独立于样本异质性和年龄准确进行分流。

方法

我们分析了总共 1254 例来自基于人群的宫颈液基细胞学(LBC)筛查的病例(98% hrHPV 阳性)和人群对照女性(100% hrHPV 阳性,且无任何宫颈疾病)的全基因组约 85 万个 CpG 位点的 DNA 甲基化情况。这些样本来源于一个最先进的基于人群的队列生物库,由(i)一个包含 170 例 CIN3+病例和 202 例 hrHPV 阳性/细胞学阴性对照的发现集;(ii)一个包含 87 例 CIN3+、90 例 CIN2、166 例 CIN1 和 111 例 hrHPV 阳性/细胞学阴性对照的诊断验证集;(iii)一个包含 428 例细胞学阴性(418 例 hrHPV 阳性)的预测验证集组成,其中 210 例在未来 1-4 年内被诊断为 CIN3+,218 例保持无疾病状态。

结果

我们开发了 WID-CIN(女性癌症风险识别-宫颈上皮内瘤变)测试,这是一个由 5000 个 CpG 位点组成的 DNA 甲基化特征。在独立的诊断验证集中,受试者工作特征曲线下面积(AUC)为 0.92(95%CI 0.88-0.96)。在特异性为 75%(≤CIN1)时,WID-CIN 检测到所有人群中 CIN3+的总敏感性为 89.7%(83.3-96.1),在年龄≥30 岁的女性中为 92.7%(85.9-99.6)和 65.6%(49.2-82.1),在年龄 <30 岁的女性中为 75.6%(69.5-81.1)。在预测验证集中的 hrHPV 阳性/细胞学阴性样本中,WID-CIN 在所有年龄段中检测到 54.8%(48.0-61.5)在样本采集后 1-4 年内发生病变的病例,或在年龄≥30 岁的女性中检测到 56.9%(47.6-66.2)和 53.5%(43.7-63.2),特异性为 75%。

结论

WID-CIN 测试可识别绝大多数当前存在 CIN3+病变的高危型 HPV 阳性女性。在无细胞学异常的情况下,WID-CIN 阳性结果很可能预示着在不久的将来发生 CIN3+的风险显著增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/678f/9580141/8eed1463c264/13073_2022_1116_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验