Suppr超能文献

磁光衍射深度神经网络

Magneto-optical diffractive deep neural network.

作者信息

Fujita Takumi, Sakaguchi Hotaka, Zhang Jian, Nonaka Hirofumi, Sumi Satoshi, Awano Hiroyuki, Ishibashi Takayuki

出版信息

Opt Express. 2022 Sep 26;30(20):36889-36899. doi: 10.1364/OE.470513.

Abstract

We propose a magneto-optical diffractive deep neural network (MO-DNN). We simulated several MO-DNNs, each of which consists of five hidden layers made of a magnetic material that contains 100 × 100 magnetic domains with a domain width of 1 µm and an interlayer distance of 0.7 mm. The networks demonstrate a classification accuracy of > 90% for the MNIST dataset when light intensity is used as the classification measure. Moreover, an accuracy of > 80% is obtained even for a small Faraday rotation angle of π/100 rad when the angle of polarization is used as the classification measure. The MO-DNN allows the hidden layers to be rewritten, which is not possible with previous implementations of DNNs.

摘要

我们提出了一种磁光衍射深度神经网络(MO-DNN)。我们模拟了几个MO-DNN,每个都由五个隐藏层组成,这些隐藏层由磁性材料制成,该磁性材料包含100×100个磁畴,畴宽为1 µm,层间距为0.7 mm。当使用光强度作为分类度量时,这些网络对MNIST数据集显示出大于90%的分类准确率。此外,当使用偏振角作为分类度量时,即使对于π/100 rad这样小的法拉第旋转角,也能获得大于80%的准确率。MO-DNN允许对隐藏层进行重写,这在以前的DNN实现中是不可能的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验