Suppr超能文献

使用体全息光学元件的波前像差容忍衍射深度神经网络。

Wavefront-aberration-tolerant diffractive deep neural networks using volume holographic optical elements.

作者信息

Hoshi Ikuo, Wakunami Koki, Ichihashi Yasuyuki, Oi Ryutaro

机构信息

Applied Electromagnetic Research Center, National Institute of Information and Communications Technology, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan.

出版信息

Sci Rep. 2025 Jan 7;15(1):1104. doi: 10.1038/s41598-024-82791-z.

Abstract

As the demand for computational performance in artificial intelligence (AI) continues to increase, diffractive deep neural networks (DNNs), which can perform AI computing at the speed of light by repeated optical modulation with diffractive optical elements (DOEs), are attracting attention. DOEs are varied in terms of fabrication methods and materials, and among them, volume holographic optical elements (vHOEs) have unique features such as high selectivity and multiplex recordability for wavelength and angle. However, when those are used for DNNs, they suffer from unknown wavefront aberrations compounded by multiple fabrication errors. Here, we propose a training method to adapt the model to be unknown wavefront aberrations and demonstrate a DNN using vHOEs. As a result, the proposed method improved the classification accuracy by approximately 58 percentage points in the optical experiment, with the model trained to classify handwritten digits. The achievement of this study can be extended to the DNN that enables the independent modulation of multiple wavelengths owing to their wavelength selectivity and wavelength division multiplex recordability. Therefore, it might be promising for various applications that require multiple wavelengths in parallel optical computing, bioimaging, and optical communication.

摘要

随着人工智能(AI)对计算性能的需求持续增长,衍射深度神经网络(DNN)正受到关注,它可以通过衍射光学元件(DOE)进行重复光学调制,以光速执行AI计算。DOE在制造方法和材料方面各不相同,其中,体全息光学元件(vHOE)具有诸如对波长和角度的高选择性和多重可记录性等独特特性。然而,当将它们用于DNN时,会受到由多种制造误差复合而成的未知波前像差的影响。在此,我们提出一种训练方法,使模型适应未知波前像差,并展示了一种使用vHOE的DNN。结果,在光学实验中,该方法将手写数字分类模型的分类准确率提高了约58个百分点。由于其波长选择性和波分复用可记录性,本研究的成果可扩展到能够独立调制多个波长的DNN。因此,对于在并行光学计算、生物成像和光通信中需要多个波长的各种应用而言,它可能很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc9d/11707286/a08764873d97/41598_2024_82791_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验