Suppr超能文献

极端天气事件的归因:科学与民众

Attributions for extreme weather events: science and the people.

作者信息

McClure John, Noy Ilan, Kashima Yoshi, Milfont Taciano L

机构信息

Victoria University of Wellington, PO Box 600, Wellington, New Zealand.

University of Melbourne, Melbourne, Australia.

出版信息

Clim Change. 2022;174(3-4):22. doi: 10.1007/s10584-022-03443-7. Epub 2022 Oct 14.

Abstract

Both climate scientists and non-scientists (laypeople) attribute extreme weather events to various influences. Laypeople's attributions for these events are important as these attributions likely influence their views and actions about climate change and extreme events. Research has examined laypeople's attribution scepticism about climate change in general; however, few climate scientists are familiar with the processes underpinning laypeople's attributions for individual extreme events. Understanding these lay attributions is important for scientists to communicate their findings to the public. Following a brief summary of the way climate scientists calculate attributions for extreme weather events, we focus on cognitive and motivational processes that underlie laypeople's attributions for specific events. These include a tendency to prefer single-cause rather than multiple-cause explanations, a discounting of whether possible causes covary with extreme events, a preference for sufficient causes over probabilities, applying prevailing causal narratives, and the influence of motivational factors. For climate scientists and communicators who wish to inform the public about the role of climate change in extreme weather events, these patterns suggest several strategies to explain scientists' attributions for these events and enhance public engagement with climate change. These strategies include showing more explicitly that extreme weather events reflect multiple causal influences, that climate change is a mechanism that covaries with these events and increases the probability and intensity of many of these events, that human emissions contributing to climate change are controllable, and that misleading communications about weather attributions reflect motivated interests rather than good evidence.

摘要

气候科学家和非科学家(普通民众)都将极端天气事件归因于各种影响因素。普通民众对这些事件的归因很重要,因为这些归因可能会影响他们对气候变化和极端事件的看法及行动。已有研究探讨了普通民众对气候变化总体上的归因怀疑态度;然而,很少有气候科学家熟悉普通民众对个别极端事件进行归因的潜在过程。了解这些普通民众的归因对于科学家向公众传达他们的研究结果很重要。在简要总结气候科学家计算极端天气事件归因的方式之后,我们重点关注普通民众对特定事件进行归因背后的认知和动机过程。这些过程包括倾向于偏好单一原因而非多原因解释、忽视可能原因与极端事件是否共变、偏好充分原因而非概率、应用流行的因果叙述以及动机因素的影响。对于希望向公众说明气候变化在极端天气事件中作用的气候科学家和传播者而言,这些模式提出了几种策略,用以解释科学家对这些事件的归因,并增强公众对气候变化的参与度。这些策略包括更明确地表明极端天气事件反映了多种因果影响、气候变化是一种与这些事件共变并增加许多此类事件发生概率和强度的机制、导致气候变化的人类排放是可控的,以及关于天气归因的误导性传播反映的是有动机的利益而非充分证据。

相似文献

1
Attributions for extreme weather events: science and the people.极端天气事件的归因:科学与民众
Clim Change. 2022;174(3-4):22. doi: 10.1007/s10584-022-03443-7. Epub 2022 Oct 14.
4
Attribution of extreme weather and climate-related events.极端天气和气候相关事件的归因
Wiley Interdiscip Rev Clim Change. 2016 Jan;7(1):23-41. doi: 10.1002/wcc.380. Epub 2015 Dec 16.
5
8
How to make value-driven climate science for policy more ethical.如何使面向政策的价值驱动型气候科学更具伦理道德。
Stud Hist Philos Sci. 2021 Oct;89:31-40. doi: 10.1016/j.shpsa.2021.06.014. Epub 2021 Jul 27.

引用本文的文献

1
Climate change adaptation through an integrative lens in Aotearoa New Zealand.新西兰通过综合视角适应气候变化。
J R Soc N Z. 2023 Aug 17;54(4):491-522. doi: 10.1080/03036758.2023.2236033. eCollection 2024.

本文引用的文献

5
Attribution of extreme weather and climate-related events.极端天气和气候相关事件的归因
Wiley Interdiscip Rev Clim Change. 2016 Jan;7(1):23-41. doi: 10.1002/wcc.380. Epub 2015 Dec 16.
6
Navigating Into the Future or Driven by the Past.驶向未来或受困于过去。
Perspect Psychol Sci. 2013 Mar;8(2):119-41. doi: 10.1177/1745691612474317.
9
Proximity to coast is linked to climate change belief.靠近海岸与气候变化信念有关。
PLoS One. 2014 Jul 21;9(7):e103180. doi: 10.1371/journal.pone.0103180. eCollection 2014.
10
Mechanisms of motivation-cognition interaction: challenges and opportunities.动机-认知交互机制:挑战与机遇
Cogn Affect Behav Neurosci. 2014 Jun;14(2):443-72. doi: 10.3758/s13415-014-0300-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验