Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
Sensors (Basel). 2022 Aug 30;22(17):6554. doi: 10.3390/s22176554.
Infectious diseases remain a common problem in low- and middle-income countries, including in Vietnam. Tetanus is a severe infectious disease characterized by muscle spasms and complicated by autonomic nervous system dysfunction in severe cases. Patients require careful monitoring using electrocardiograms (ECGs) to detect deterioration and the onset of autonomic nervous system dysfunction as early as possible. Machine learning analysis of ECG has been shown of extra value in predicting tetanus severity, however any additional ECG signal analysis places a high demand on time-limited hospital staff and requires specialist equipment. Therefore, we present a novel approach to tetanus monitoring from low-cost wearable sensors combined with a deep-learning-based automatic severity detection. This approach can automatically triage tetanus patients and reduce the burden on hospital staff. In this study, we propose a two-dimensional (2D) convolutional neural network with a channel-wise attention mechanism for the binary classification of ECG signals. According to the Ablett classification of tetanus severity, we define grades 1 and 2 as mild tetanus and grades 3 and 4 as severe tetanus. The one-dimensional ECG time series signals are transformed into 2D spectrograms. The 2D attention-based network is designed to extract the features from the input spectrograms. Experiments demonstrate a promising performance for the proposed method in tetanus classification with an F1 score of 0.79 ± 0.03, precision of 0.78 ± 0.08, recall of 0.82 ± 0.05, specificity of 0.85 ± 0.08, accuracy of 0.84 ± 0.04 and AUC of 0.84 ± 0.03.
传染病仍然是低收入和中等收入国家的一个常见问题,包括越南。破伤风是一种严重的传染病,其特征是肌肉痉挛,严重病例会并发自主神经系统功能障碍。患者需要使用心电图 (ECG) 进行仔细监测,以尽早发现病情恶化和自主神经系统功能障碍的发生。机器学习对 ECG 的分析已被证明对预测破伤风的严重程度具有额外的价值,然而任何额外的 ECG 信号分析都对时间有限的医院工作人员提出了很高的要求,并需要专门的设备。因此,我们提出了一种从低成本可穿戴传感器结合基于深度学习的自动严重程度检测来监测破伤风的新方法。这种方法可以自动对破伤风患者进行分诊,减轻医院工作人员的负担。在这项研究中,我们提出了一种具有通道注意力机制的二维 (2D) 卷积神经网络,用于对 ECG 信号进行二进制分类。根据破伤风严重程度的 Ablett 分类,我们将等级 1 和 2 定义为轻度破伤风,等级 3 和 4 定义为重度破伤风。一维 ECG 时间序列信号被转换为 2D 频谱图。2D 基于注意力的网络被设计用来从输入频谱图中提取特征。实验表明,该方法在破伤风分类方面具有有前景的性能,F1 得分为 0.79 ± 0.03,精度为 0.78 ± 0.08,召回率为 0.82 ± 0.05,特异性为 0.85 ± 0.08,准确率为 0.84 ± 0.04,AUC 为 0.84 ± 0.03。