Suppr超能文献

固定化生长分化因子-7的、机械强度高的四乙烯五胺-六亚甲基二异氰酸酯-甲基丙烯酸酐聚氨酯聚合物用于肌腱修复与再生

Growth and differentiation factor-7 immobilized, mechanically strong quadrol-hexamethylene diisocyanate-methacrylic anhydride polyurethane polymer for tendon repair and regeneration.

作者信息

Wang Dan, Zhang Xu, Ng Ka Wai, Rao Ying, Wang Chenyang, Gharaibeh Burhan, Lin Sien, Abrams Geoffrey, Safran Marc, Cheung Emilie, Campbell Phil, Weiss Lee, Ker Dai Fei Elmer, Yang Yunzhi Peter

机构信息

Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromuscular Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China.

Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.

出版信息

Acta Biomater. 2022 Dec;154:108-122. doi: 10.1016/j.actbio.2022.10.029. Epub 2022 Oct 19.

Abstract

Biological and mechanical cues are both vital for biomaterial aided tendon repair and regeneration. Here, we fabricated mechanically tendon-like (0 s UV) QHM polyurethane scaffolds (Q: Quadrol, H: Hexamethylene diisocyanate; M: Methacrylic anhydride) and immobilized them with Growth and differentiation factor-7 (GDF-7) to produce mechanically strong and tenogenic scaffolds. In this study, we assessed QHM polymer cytocompatibility, amenability to fibrin-coating, immobilization and persistence of GDF-7, and capability to support GDF-7-mediated tendon differentiation in vitro as well as in vivo in mouse subcutaneous and acute rat rotator cuff tendon resection models. Cytocompatibility studies showed that QHM facilitated cell attachment, proliferation, and viability. Fibrin-coating and GDF-7 retention studies showed that mechanically tendon-like 0 s UV QHM polymer could be immobilized with GDF-7 and retained the growth factor (GF) for at least 1-week ex vivo. In vitro differentiation studies showed that GDF-7 mediated bone marrow-derived human mesenchymal stem cell (hMSC) tendon-like differentiation on 0 s UV QHM. Subcutaneous implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in mice for 2 weeks demonstrated de novo formation of tendon-like tissue while implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in a rat acute rotator cuff resection injury model indicated tendon-like tissue formation in situ and the absence of heterotopic ossification. Together, our work demonstrates a promising synthetic scaffold with human tendon-like biomechanical attributes as well as immobilized tenogenic GDF-7 for tendon repair and regeneration. STATEMENT OF SIGNIFICANCE: Biological activity and mechanical robustness are key features required for tendon-promoting biomaterials. While synthetic biomaterials can be mechanically robust, they often lack bioactivity. To biologically augment synthetic biomaterials, numerous drug and GF delivery strategies exist but the large tissue space within the shoulder is constantly flushed with saline during arthroscopic surgery, hindering efficacious controlled release of therapeutic molecules. Here, we coated QHM polymer (which exhibits human tendon-to-bone-like biomechanical attributes) with fibrin for GF binding. Unlike conventional drug delivery strategies, our approach utilizes immobilized GFs as opposed to released GFs for sustained, localized tissue regeneration. Our data demonstrated that GF immobilization can be broadly applied to synthetic biomaterials for enhancing bioactivity, and GDF-7-immobilized QHM exhibit high clinical translational potential for tendon repair.

摘要

生物和机械信号对于生物材料辅助的肌腱修复和再生都至关重要。在此,我们制备了具有机械肌腱样特性(0秒紫外线照射)的QHM聚氨酯支架(Q:四乙烯五胺;H:六亚甲基二异氰酸酯;M:甲基丙烯酸酐),并用生长分化因子-7(GDF-7)对其进行固定,以制备出机械强度高且具有成腱性的支架。在本研究中,我们评估了QHM聚合物的细胞相容性、对纤维蛋白涂层的适应性、GDF-7的固定化及持久性,以及在体外和体内(小鼠皮下和大鼠急性肩袖肌腱切除模型)支持GDF-7介导的肌腱分化的能力。细胞相容性研究表明,QHM促进了细胞附着、增殖和活力。纤维蛋白涂层和GDF-7保留研究表明,具有机械肌腱样特性的0秒紫外线照射QHM聚合物可以用GDF-7进行固定,并在体外至少保留生长因子(GF)1周。体外分化研究表明,GDF-7介导了骨髓来源的人间充质干细胞(hMSC)在0秒紫外线照射QHM上的肌腱样分化。将固定有GDF-7、涂有纤维蛋白的QHM聚合物皮下植入小鼠体内2周,证明了肌腱样组织的新生,而将固定有GDF-7、涂有纤维蛋白的QHM聚合物植入大鼠急性肩袖切除损伤模型中,表明原位形成了肌腱样组织且无异位骨化。总之,我们的工作展示了一种有前景的合成支架,其具有类似人类肌腱的生物力学特性以及固定化的成腱GDF-7,用于肌腱修复和再生。重要性声明:生物活性和机械稳健性是促进肌腱生长的生物材料所需的关键特性。虽然合成生物材料在机械性能上可能很稳健,但它们往往缺乏生物活性。为了在生物学上增强合成生物材料,存在许多药物和生长因子递送策略,但在关节镜手术期间,肩部的大组织空间会不断被生理盐水冲洗,这阻碍了治疗分子的有效控释。在此,我们用纤维蛋白对QHM聚合物(其具有类似人类肌腱到骨的生物力学特性)进行涂层以结合生长因子。与传统的药物递送策略不同,我们的方法利用固定化的生长因子而非释放的生长因子来实现持续的局部组织再生。我们的数据表明,生长因子固定化可广泛应用于合成生物材料以增强生物活性,并且固定有GDF-7的QHM在肌腱修复方面具有很高的临床转化潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验