Ker Dai Fei Elmer, Wang Dan, Behn Anthony William, Wang Evelyna Tsi Hsin, Zhang Xu, Zhou Benjamin Yamin, Mercado-Pagán Ángel Enrique, Kim Sungwoo, Kleimeyer John, Gharaibeh Burhan, Shanjani Yaser, Nelson Drew, Safran Marc, Cheung Emilie, Campbell Phil, Yang Yunzhi Peter
Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA.
Department of Material Science and Engineering Stanford University 496 Lomita Mall, Stanford, CA 94305, USA.
Adv Funct Mater. 2018 May;28(20). doi: 10.1002/adfm.201707107. Epub 2018 Mar 30.
Critical considerations in engineering biomaterials for rotator cuff repair include bone-tendon-like mechanical properties to support physiological loading and biophysicochemical attributes that stabilize the repair site over the long-term. In this study, UV-crosslinkable polyurethane based on quadrol (Q), hexamethylene diisocyante (H), and methacrylic anhydride (M; QHM polymers), which are free of solvent, catalyst, and photoinitiator, is developed. Mechanical characterization studies demonstrate that QHM polymers possesses phototunable bone- and tendon-like tensile and compressive properties (12-74 MPa tensile strength, 0.6-2.7 GPa tensile modulus, 58-121 MPa compressive strength, and 1.5-3.0 GPa compressive modulus), including the capability to withstand 10 000 cycles of physiological tensile loading and reduce stress concentrations via stiffness gradients. Biophysicochemical studies demonstrate that QHM polymers have clinically favorable attributes vital to rotator cuff repair stability, including slow degradation profiles (5-30% mass loss after 8 weeks) with little-to-no cytotoxicity in vitro, exceptional suture retention ex vivo (2.79-3.56-fold less suture migration relative to a clinically available graft), and competent tensile properties (similar ultimate load but higher normalized tensile stiffness relative to a clinically available graft) as well as good biocompatibility for augmenting rat supraspinatus tendon repair in vivo. This work demonstrates functionally graded, bone-tendon-like biomaterials for interfacial tissue engineering.
用于肩袖修复的工程生物材料的关键考虑因素包括类似骨腱的机械性能以支持生理负荷,以及能长期稳定修复部位的生物物理化学属性。在本研究中,开发了一种基于乙二胺(Q)、六亚甲基二异氰酸酯(H)和甲基丙烯酸酐(M;QHM聚合物)的可紫外光交联的聚氨酯,其不含溶剂、催化剂和光引发剂。力学表征研究表明,QHM聚合物具有光可调的类似骨和腱的拉伸和压缩性能(拉伸强度为12 - 74MPa,拉伸模量为0.6 - 2.7GPa,压缩强度为58 - 121MPa,压缩模量为1.5 - 3.0GPa),包括承受10000次生理拉伸负荷循环的能力以及通过刚度梯度降低应力集中的能力。生物物理化学研究表明,QHM聚合物具有对肩袖修复稳定性至关重要的临床有利属性,包括缓慢的降解曲线(8周后质量损失5 - 30%),体外几乎没有细胞毒性,离体时出色的缝线保留能力(相对于临床可用移植物,缝线迁移减少2.79 - 3.56倍),以及良好的拉伸性能(相对于临床可用移植物,极限负荷相似但归一化拉伸刚度更高),并且在体内增强大鼠冈上肌腱修复时具有良好的生物相容性。这项工作展示了用于界面组织工程的功能梯度、类似骨腱的生物材料。