Suppr超能文献

利用深度学习从糖尿病性黄斑水肿的光学相干断层扫描中推断视力

Deep learning to infer visual acuity from optical coherence tomography in diabetic macular edema.

作者信息

Lin Ting-Yi, Chen Hung-Ruei, Huang Hsin-Yi, Hsiao Yu-Ier, Kao Zih-Kai, Chang Kao-Jung, Lin Tai-Chi, Yang Chang-Hao, Kao Chung-Lan, Chen Po-Yin, Huang Shih-En, Hsu Chih-Chien, Chou Yu-Bai, Jheng Ying-Chun, Chen Shih-Jen, Chiou Shih-Hwa, Hwang De-Kuang

机构信息

Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.

School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

出版信息

Front Med (Lausanne). 2022 Oct 6;9:1008950. doi: 10.3389/fmed.2022.1008950. eCollection 2022.

Abstract

PURPOSE

Diabetic macular edema (DME) is one of the leading causes of visual impairment in diabetic retinopathy (DR). Physicians rely on optical coherence tomography (OCT) and baseline visual acuity (VA) to tailor therapeutic regimen. However, best-corrected visual acuity (BCVA) from chart-based examinations may not wholly reflect DME status. Chart-based examinations are subjected findings dependent on the patient's recognition functions and are often confounded by concurrent corneal, lens, retinal, optic nerve, or extraocular disorders. The ability to infer VA from objective optical coherence tomography (OCT) images provides the predicted VA from objective macular structures directly and a better understanding of diabetic macular health. Deviations from chart-based and artificial intelligence (AI) image-based VA will prompt physicians to assess other ocular abnormalities affecting the patients VA and whether pursuing anti-VEGF treatment will likely yield increment in VA.

MATERIALS AND METHODS

We enrolled a retrospective cohort of 251 DME patients from Big Data Center (BDC) of Taipei Veteran General Hospital (TVGH) from February 2011 and August 2019. A total of 3,920 OCT images, labeled as "visually impaired" or "adequate" according to baseline VA, were grouped into training (2,826), validation (779), and testing cohort (315). We applied confusion matrix and receiver operating characteristic (ROC) curve to evaluate the performance.

RESULTS

We developed an OCT-based convolutional neuronal network (CNN) model that could classify two VA classes by the threshold of 0.50 (decimal notation) with an accuracy of 75.9%, a sensitivity of 78.9%, and an area under the ROC curve of 80.1% on the testing cohort.

CONCLUSION

This study demonstrated the feasibility of inferring VA from routine objective retinal images.

TRANSLATIONAL RELEVANCE

Serves as a pilot study to encourage further use of deep learning in deriving functional outcomes and secondary surrogate endpoints for retinal diseases.

摘要

目的

糖尿病性黄斑水肿(DME)是糖尿病视网膜病变(DR)导致视力损害的主要原因之一。医生依靠光学相干断层扫描(OCT)和基线视力(VA)来制定治疗方案。然而,基于视力表检查的最佳矫正视力(BCVA)可能无法完全反映DME的状况。基于视力表的检查结果依赖于患者的认知功能,并且常常受到同时存在的角膜、晶状体、视网膜、视神经或眼外疾病的干扰。从客观光学相干断层扫描(OCT)图像推断视力的能力可直接从客观黄斑结构提供预测视力,并能更好地了解糖尿病性黄斑健康状况。基于视力表和基于人工智能(AI)图像的视力之间的差异将促使医生评估影响患者视力的其他眼部异常情况,以及进行抗血管内皮生长因子(VEGF)治疗是否可能提高视力。

材料与方法

我们纳入了一个回顾性队列,该队列由2011年2月至2019年8月从台北荣民总医院(TVGH)大数据中心(BDC)选取的251例DME患者组成。根据基线视力标记为“视力受损”或“正常”的总共3920张OCT图像被分为训练组(2826张)、验证组(779张)和测试组(315张)。我们应用混淆矩阵和受试者操作特征(ROC)曲线来评估性能。

结果

我们开发了一种基于OCT的卷积神经网络(CNN)模型,该模型可以通过0.50(十进制表示法)的阈值对两个视力类别进行分类,在测试组上的准确率为75.9%,灵敏度为78.9%,ROC曲线下面积为80.1%。

结论

本研究证明了从常规客观视网膜图像推断视力的可行性。

转化意义

作为一项试点研究,鼓励在推导视网膜疾病的功能结局和次要替代终点方面进一步使用深度学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dd1/9582267/5a38a41df06e/fmed-09-1008950-g001.jpg

相似文献

1
Deep learning to infer visual acuity from optical coherence tomography in diabetic macular edema.
Front Med (Lausanne). 2022 Oct 6;9:1008950. doi: 10.3389/fmed.2022.1008950. eCollection 2022.
4
Fully automated detection of retinal disorders by image-based deep learning.
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.
5
Artificial Intelligence-Based Quantification of Central Macular Fluid Volume and VA Prediction for Diabetic Macular Edema Using OCT Images.
Ophthalmol Ther. 2023 Oct;12(5):2441-2452. doi: 10.1007/s40123-023-00746-5. Epub 2023 Jun 15.
8
Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema.
Ophthalmology. 2007 Mar;114(3):525-36. doi: 10.1016/j.ophtha.2006.06.052. Epub 2006 Nov 21.
10
Optical coherence tomography patterns of diabetic macular edema in a Saudi population.
Clin Ophthalmol. 2019 Apr 24;13:707-714. doi: 10.2147/OPTH.S199713. eCollection 2019.

引用本文的文献

本文引用的文献

1
Digitising the vision test.
Lancet. 2021 Oct 9;398(10308):1296. doi: 10.1016/S0140-6736(21)02149-8.
3
Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular Age-Related Macular Degeneration.
Ophthalmology. 2020 Sep;127(9):1211-1219. doi: 10.1016/j.ophtha.2020.03.010. Epub 2020 Mar 16.
8
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs.
Eur Radiol. 2019 Oct;29(10):5469-5477. doi: 10.1007/s00330-019-06167-y. Epub 2019 Apr 1.
9
Real-world outcomes of observation and treatment in diabetic macular edema with very good visual acuity: the OBTAIN study.
Acta Diabetol. 2019 Jul;56(7):777-784. doi: 10.1007/s00592-019-01310-z. Epub 2019 Mar 22.
10
Artificial intelligence-based decision-making for age-related macular degeneration.
Theranostics. 2019 Jan 1;9(1):232-245. doi: 10.7150/thno.28447. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验