Suppr超能文献

基于迁移学习策略的深度残差神经网络从CT图像对肺癌病理类型进行分类

Classification of Pathological Types of Lung Cancer from CT Images by Deep Residual Neural Networks with Transfer Learning Strategy.

作者信息

Wang Shudong, Dong Liyuan, Wang Xun, Wang Xingguang

机构信息

College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580, Shandong, China.

School of Electrical Engineering and Automation, Tiangong University, Tianjin 300387, China.

出版信息

Open Med (Wars). 2020 Mar 8;15:190-197. doi: 10.1515/med-2020-0028. eCollection 2020.

Abstract

Lung cancer is one of the most harmful malignant tumors to human health. The accurate judgment of the pathological type of lung cancer is vital for treatment. Traditionally, the pathological type of lung cancer requires a histopathological examination to determine, which is invasive and time consuming. In this work, a novel residual neural network is proposed to identify the pathological type of lung cancer via CT images. Due to the low amount of CT images in practice, we explored a medical-to-medical transfer learning strategy. Specifically, a residual neural network is pre-trained on public medical images dataset luna16, and then fine-tuned on our intellectual property lung cancer dataset collected in Shandong Provincial Hospital. Data experiments show that our method achieves 85.71% accuracy in identifying pathological types of lung cancer from CT images and outperforming other models trained with 2054 labels. Our method performs better than AlexNet, VGG16 and DenseNet, which provides an efficient, non-invasive detection tool for pathological diagnosis.

摘要

肺癌是对人类健康危害最大的恶性肿瘤之一。准确判断肺癌的病理类型对治疗至关重要。传统上,肺癌的病理类型需要通过组织病理学检查来确定,这种方法具有侵入性且耗时。在这项工作中,提出了一种新型残差神经网络,通过CT图像识别肺癌的病理类型。由于实际中CT图像数量较少,我们探索了一种医学到医学的迁移学习策略。具体来说,在公共医学图像数据集luna16上对残差神经网络进行预训练,然后在我们在山东省立医院收集的自有知识产权肺癌数据集上进行微调。数据实验表明,我们的方法在从CT图像识别肺癌病理类型方面达到了85.71%的准确率,优于其他使用2054个标签训练的模型。我们的方法比AlexNet、VGG16和DenseNet表现更好,为病理诊断提供了一种高效、非侵入性的检测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/913a/7065426/8efbc7ddc4e5/med-15-190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验