Jeffrey Danielle A, Fontaine Jackson T, Dabertrand Fabrice
University of Colorado Anschutz Medical Campus, Department of Anesthesiology, Aurora, Colorado, United States.
University of Colorado Anschutz Medical Campus, Department of Pharmacology, Aurora, Colorado, United States.
Neurophotonics. 2022 Jul;9(3):031919. doi: 10.1117/1.NPh.9.3.031919. Epub 2022 Jun 23.
Vascular mural cells, defined as smooth muscle cells (SMCs) and pericytes, influence brain microcirculation, but how they contribute is not fully understood. Most approaches used to investigate pericyte and capillary interactions include retinal/slice preparations or two-photon microscopy. However, neither method adequately captures mural cell behavior without interfering neuronal tissue. Thus, there is a need to isolate vessels with their respective mural cells to study functional and pathological changes.
The aim of our work was to implement an method that recapitulates vessel dynamics in the brain.
Expanding upon our established capillary-parenchymal arteriole (CaPA) preparation, we isolated and pressurized arteriole-capillary branches. Using Alexa Fluor™ 633 Hydrazide, we distinguished arterioles (containing elastin) versus capillaries (lacking elastin). In addition, our transgenic SMMHC-GCaMP6f mice allowed for us to visualize mural cell morphology and signals. Lastly, isolated microvasculature was cultured in DMEM media (up to 72 h), mounted, and pressurized using our CaPA preparation.
U46619 induced a decrease in capillary lumen diameter using both a bath perfusion and local application. In addition, U46619 increased signaling both globally and locally in contractile pericytes. In our SMMHC-GCaMP6f mice, we saw that thin strand pericytes had sparse processes while contractile pericytes had long, thick processes that wrapped around the lumen of the capillary. Fresh and cultured pericytes constricted in response to U46619 to the same level, and upstream arteriolar dilation induced by capillary stimulation with 10 mM remained unchanged by culture conditions adding another application of longer treatment to our approach.
Our CaPA methodology facilitates observation of arteriolar SMC and pericyte dynamic changes in real-time without environmental factors. This method will help to better understand how mural cells differ based on microvasculature location.
血管壁细胞,定义为平滑肌细胞(SMC)和周细胞,影响脑微循环,但其作用机制尚未完全明确。大多数用于研究周细胞与毛细血管相互作用的方法包括视网膜/切片标本或双光子显微镜检查。然而,这两种方法在不干扰神经元组织的情况下都无法充分捕捉壁细胞的行为。因此,需要分离带有各自壁细胞的血管,以研究功能和病理变化。
我们工作的目的是实施一种能够概括脑内血管动态变化的方法。
在我们已建立的毛细血管 - 实质小动脉(CaPA)制备方法的基础上,我们分离并对小动脉 - 毛细血管分支进行加压。使用Alexa Fluor™ 633酰肼,我们区分了小动脉(含有弹性蛋白)和毛细血管(缺乏弹性蛋白)。此外,我们的转基因SMMHC - GCaMP6f小鼠使我们能够观察壁细胞形态和信号。最后,将分离的微血管在DMEM培养基中培养(长达72小时),安装并使用我们的CaPA制备方法进行加压。
U46619通过浴灌注和局部应用均导致毛细血管腔直径减小。此外,U46619在收缩性周细胞中全局和局部增加了信号传导。在我们的SMMHC - GCaMP6f小鼠中,我们观察到细条索状周细胞的突起稀疏,而收缩性周细胞具有长而粗的突起,环绕着毛细血管腔。新鲜和培养的周细胞对U46619的收缩反应程度相同,并且在添加了另一种更长时间处理方法的培养条件下,由10 mM刺激毛细血管引起的上游小动脉扩张保持不变。
我们的CaPA方法有助于实时观察小动脉SMC和周细胞的动态变化,而不受环境因素影响。该方法将有助于更好地理解壁细胞如何根据微血管位置而有所不同。