Institute of Marine Science and Technology, Shandong University, Qingdao266237, P.R. China.
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100049, P.R. China.
ACS Nano. 2022 Nov 22;16(11):18849-18862. doi: 10.1021/acsnano.2c07691. Epub 2022 Oct 24.
Single-atom nanozymes (SAzymes), with individually isolated metal atom as active sites, have shown tremendous potential as enzyme-based drugs for enzymatic therapy. However, using SAzymes in tumor theranostics remains challenging because of deficient enzymatic activity and insufficient endogenous HO. We develop an external-field-enhanced catalysis by an atom-level engineered FeN-centered nanozyme (FeN-SAzyme) for radio-enzymatic therapy. This FeN-SAzyme exhibits peroxidase-like activity capable of catalyzing HO into hydroxyl radicals and converting single-site Fe species to Fe for subsequent glutathione oxidase-like activity. Density functional theory calculations are used to rationalize the origin of the single-site self-cascade enzymatic activity. Importantly, using X-rays can improve the overall single-site cascade enzymatic reaction process via promoting the conversion frequency of Fe/Fe. As a HO producer, natural glucose oxidase is further decorated onto the surface of FeN-SAzyme to yield the final construct GOD@FeN-SAzyme. The resulting GOD@FeN-SAzyme not only supplies in situ HO to continuously produce highly toxic hydroxyl radicals but also induces the localized deposition of radiation dose, subsequently inducing intensive apoptosis and ferroptosis in vitro. Such a synergistic effect of radiotherapy and self-cascade enzymatic therapy allows for improved tumor growth inhibition with minimal side effects in vivo. Collectively, this work demonstrates the introduction of external fields to enhance enzyme-like performance of nanozymes without changing their properties and highlights a robust therapeutic capable of self-supplying HO and amplifying self-cascade reactions to address the limitations of enzymatic treatment.
单原子纳米酶(SAzymes)以孤立的金属原子作为活性位点,具有作为基于酶的药物用于酶疗的巨大潜力。然而,由于酶活性不足和内源性 HO 不足,将 SAzymes 应用于肿瘤治疗仍然具有挑战性。我们开发了一种通过原子级工程化的 FeN 中心纳米酶(FeN-SAzyme)进行外场增强催化的用于放射酶疗的方法。这种 FeN-SAzyme 具有过氧化物酶样活性,能够将 HO 催化成羟基自由基,并将单原子铁物种转化为 Fe,以随后发挥谷胱甘肽过氧化物酶样活性。密度泛函理论计算用于合理推断单原子自级联酶活性的起源。重要的是,使用 X 射线可以通过促进 Fe/Fe 的转化频率来提高整体单原子级联酶反应过程。作为 HO 产生剂,天然葡萄糖氧化酶进一步修饰在 FeN-SAzyme 的表面上,得到最终的构建体 GOD@FeN-SAzyme。所得的 GOD@FeN-SAzyme 不仅提供原位 HO 以持续产生高毒性的羟基自由基,还诱导局部辐射剂量沉积,随后在体外诱导强烈的细胞凋亡和铁死亡。放射治疗和自级联酶疗的协同作用使得在体内能够以最小的副作用实现肿瘤生长抑制的改善。总的来说,这项工作展示了引入外场来增强纳米酶的类酶性能而不改变其性质,并强调了一种强大的治疗方法,能够自我供应 HO 并放大自级联反应,以解决酶疗的局限性。
ACS Appl Mater Interfaces. 2022-4-20
J Colloid Interface Sci. 2022-7-15
Angew Chem Int Ed Engl. 2021-2-8
Nat Commun. 2025-7-24
ACS Mater Au. 2025-1-31
Nanomedicine (Lond). 2025-2
J Nanobiotechnology. 2024-10-26