Suppr超能文献

糖尿病的预后因素:卡方自动交互检测(CHAID)决策树技术与逻辑回归的比较。

Prognostic factors in diabetes: Comparison of Chi-square automatic interaction detector (CHAID) decision tree technology and logistic regression.

机构信息

Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea.

Research Institute for Skin Image, Korea University College of Medicine, Seoul, Republic of Korea.

出版信息

Medicine (Baltimore). 2022 Oct 21;101(42):e31343. doi: 10.1097/MD.0000000000031343.

Abstract

This study aimed to develop a diabetes prediction model. The model performance was compared with logistic regression, and the decision tree Chi-square automatic interaction detection (CHAID) was used to predict diabetes. In total, 3233 patients were included in the analysis. Of these, 589 patients with diabetes and 2644 patients without diabetes were included after analyzing the study sample from the Korean Genome and Epidemiology Study (KoGES)-8 data. In this study, Diabetes Mellitus (DM) diagnosis prediction was compared with logistic regression and prediction through machine learning (ML) using the CHAID decision classification tree. We performed statistical analysis using the CHAID method with International Business Machine (IBM) statistical program SPSS®. We performed logistic regression analysis to predict the classification of diabetes accurately, and the total classification accuracy of the analysis was 81.7%, and the CHAID decision tree classification accuracy was 81.8%. A diabetes diagnosis decision tree was created, which included seven terminal nodes and three depth levels. This analysis showed that a blood pressure problem and hospital visits were the most decisive variables at the time of classification, and two risk levels were created for diabetes diagnosis. The suggested method is a valuable tool for predicting diabetes. Patients who visit the hospital because of blood pressure problems are more likely to develop diabetes than under-treating hyperlipidemia. The diabetes prediction model can help doctors make decisions by detecting the possibility of diabetes early; however, it is impossible to diagnose diabetes using only the model without the doctor's opinion.

摘要

本研究旨在开发一种糖尿病预测模型。将模型性能与逻辑回归进行比较,并使用决策树卡方自动交互检测(CHAID)来预测糖尿病。共纳入 3233 例患者。在对韩国基因组与流行病学研究(KoGES)-8 数据中的研究样本进行分析后,纳入 589 例糖尿病患者和 2644 例非糖尿病患者。在这项研究中,使用 CHAID 决策分类树,通过逻辑回归和机器学习(ML)比较了糖尿病(DM)诊断预测。我们使用 IBM 统计程序 SPSS®中的 CHAID 方法进行了统计分析。我们进行了逻辑回归分析,以准确预测糖尿病的分类,分析的总分类准确率为 81.7%,CHAID 决策树分类准确率为 81.8%。创建了一个糖尿病诊断决策树,其中包含七个终端节点和三个深度级别。该分析表明,在分类时,血压问题和医院就诊是最具决定性的变量,并且为糖尿病诊断创建了两个风险级别。该方法是预测糖尿病的一种有价值的工具。由于血压问题而就诊的患者比治疗高血脂不足的患者更有可能患上糖尿病。糖尿病预测模型可以通过早期检测糖尿病的可能性帮助医生做出决策;然而,仅使用模型而没有医生的意见,无法诊断糖尿病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f9c/9592288/7ee1b7b19fab/medi-101-e31343-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验