Suppr超能文献

基于深度卷积神经网络的 CT 扫描下颌骨骨折检测与分类。

Detection and classification of mandibular fracture on CT scan using deep convolutional neural network.

机构信息

Department of Oral and Maxillofacial SurgeryNational Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital StomatologyNational Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, No 22 Zhongguancun South Road, Beijing, 100081, People's Republic of China.

Deepcare, Inc, Beijing, China.

出版信息

Clin Oral Investig. 2022 Jun;26(6):4593-4601. doi: 10.1007/s00784-022-04427-8. Epub 2022 Feb 26.

Abstract

OBJECTIVES

This study aimed to evaluate the accuracy and reliability of convolutional neural networks (CNNs) for the detection and classification of mandibular fracture on spiral computed tomography (CT).

MATERIALS AND METHODS

Between January 2013 and July 2020, 686 patients with mandibular fractures who underwent CT scan were classified and annotated by three experienced maxillofacial surgeons serving as the ground truth. An algorithm including two convolutional neural networks (U-Net and ResNet) was trained, validated, and tested using 222, 56, and 408 CT scans, respectively. The diagnostic performance of the algorithm was compared with the ground truth and evaluated by DICE, accuracy, sensitivity, specificity, and area under the ROC curve (AUC).

RESULTS

One thousand five hundred six mandibular fractures in nine subregions of 686 patients were diagnosed. The DICE of mandible segmentation using U-Net was 0.943. The accuracies of nine subregions were all above 90%, with a mean AUC of 0.956.

CONCLUSIONS

CNNs showed comparable reliability and accuracy in detecting and classifying mandibular fractures on CT.

CLINICAL RELEVANCE

The algorithm for automatic detection and classification of mandibular fractures will help improve diagnostic efficiency and provide expertise to areas with lower medical levels.

摘要

目的

本研究旨在评估卷积神经网络(CNN)在螺旋 CT 上检测和分类下颌骨骨折的准确性和可靠性。

材料和方法

2013 年 1 月至 2020 年 7 月,686 例下颌骨骨折患者接受 CT 扫描,由 3 名经验丰富的颌面外科医生进行分类和标注作为金标准。使用 222、56 和 408 次 CT 扫描分别对包含两个卷积神经网络(U-Net 和 ResNet)的算法进行训练、验证和测试。算法的诊断性能与金标准进行比较,并通过 DICE、准确性、敏感性、特异性和 ROC 曲线下面积(AUC)进行评估。

结果

686 例患者的 9 个亚区共诊断出 1506 例下颌骨骨折。U-Net 用于下颌骨分割的 DICE 为 0.943。9 个亚区的准确率均在 90%以上,平均 AUC 为 0.956。

结论

CNN 在 CT 上检测和分类下颌骨骨折的可靠性和准确性相当。

临床意义

自动检测和分类下颌骨骨折的算法将有助于提高诊断效率,并为医疗水平较低的地区提供专业知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验