Tian Xuejiao, Lin Tzu-Yang, Lin Po-Ting, Tsai Min-Ju, Chen Hsin, Chen Wen-Jie, Lee Chia-Ming, Tu Chiao-Hui, Hsu Jui-Cheng, Hsieh Tung-Han, Tung Yi-Chung, Wang Chien-Kai, Lin Suewei, Chu Li-An, Tseng Fan-Gang, Hsueh Yi-Ping, Lee Chi-Hon, Chen Peilin, Chen Bi-Chang
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.
Nat Commun. 2024 Dec 30;15(1):10911. doi: 10.1038/s41467-024-55305-8.
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio. Here we show that at a tile scanning speed of ~1 min/mm with 10 pixels over 14 hours, we image the centimeter-sized fly brain at an effective resolution comparable to electron microscopy, allowing us to visualize mitochondria within presynaptic compartments and Bruchpilot (Brp) scaffold proteins distributed in the central complex, enabling robust analyses of neurobiological topics.
利用果蝇大脑扩张后的良好机械强度,并针对其相对较大的尺寸可能使成像复杂化的问题,我们将基于聚丙烯酸钾的水凝胶应用于扩张显微镜(ExM),从而使通过戊二醛固定保存在神经系统中的转基因荧光蛋白的分辨率提高了40倍以上。通过使用基于轴锥镜的贝塞尔光片显微镜实现了大体积ExM,该显微镜具有柔和的多色荧光团激发和固有的光学切片能力,能够可视化视叶中带有光感受器的Tm5a神经突和L3层神经元。我们还对同一个完整的经反复扩张的果蝇大脑中的纳米级多巴胺能神经元进行成像,从而能够测量三维扩张率。在这里我们表明,以约1分钟/毫米的拼接扫描速度、10像素的分辨率在14小时内,我们对厘米大小的果蝇大脑进行成像,其有效分辨率可与电子显微镜相媲美,使我们能够可视化突触前小室中的线粒体以及分布在中央复合体中的bruchpilot(Brp)支架蛋白,从而能够对神经生物学主题进行有力分析。