Ulanowski Alexander, Merkel Benjamin, Reiserer Andreas
Max-Planck-Institut für Quantenoptik, Quantum Networks Group, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany.
Technical University of Munich, TUM School of Natural Sciences and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Str. 1, D-85748 Garching, Germany.
Sci Adv. 2022 Oct 28;8(43):eabo4538. doi: 10.1126/sciadv.abo4538. Epub 2022 Oct 26.
In a quantum network, coherent emitters can be entangled over large distances using photonic channels. In solid-state devices, the required efficient light-emitter interface can be implemented by confining the light in nanophotonic structures. However, fluctuating charges and magnetic moments at the nearby interface then lead to spectral instability of the emitters. Here, we avoid this limitation when enhancing the photon emission up to 70(12)-fold using a Fabry-Perot resonator with an embedded 19-micrometer-thin crystalline membrane, in which we observe around 100 individual erbium emitters. In long-term measurements, they exhibit an exceptional spectral stability of <0.2 megahertz that is limited by the coupling to surrounding nuclear spins. We further implement spectrally multiplexed coherent control and find an optical coherence time of 0.11(1) milliseconds, approaching the lifetime limit of 0.3 milliseconds for the strongest-coupled emitters. Our results constitute an important step toward frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
在量子网络中,相干发射器可利用光子通道在大距离上实现纠缠。在固态器件中,所需的高效发光体界面可通过将光限制在纳米光子结构中来实现。然而,附近界面处波动的电荷和磁矩会导致发射器的光谱不稳定。在此,我们通过使用嵌入了19微米厚晶体膜的法布里-珀罗谐振器将光子发射增强至70(12)倍,从而避免了这一限制,在该晶体膜中我们观察到约100个单个铒发射器。在长期测量中,它们表现出小于0.2兆赫兹的异常光谱稳定性,这一稳定性受与周围核自旋耦合的限制。我们进一步实现了光谱复用相干控制,并发现光学相干时间为0.11(1)毫秒,接近最强耦合发射器0.3毫秒的寿命极限。我们的结果朝着直接在电信波长下运行的频率复用量子网络节点迈出了重要一步。