Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA.
Nat Commun. 2023 Mar 28;14(1):1718. doi: 10.1038/s41467-023-37513-w.
Rare earth emitters enable critical quantum resources including spin qubits, single photon sources, and quantum memories. Yet, probing of single ions remains challenging due to low emission rate of their intra-4f optical transitions. One feasible approach is through Purcell-enhanced emission in optical cavities. The ability to modulate cavity-ion coupling in real-time will further elevate the capacity of such systems. Here, we demonstrate direct control of single ion emission by embedding erbium dopants in an electro-optically active photonic crystal cavity patterned from thin-film lithium niobate. Purcell factor over 170 enables single ion detection, which is verified by second-order autocorrelation measurement. Dynamic control of emission rate is realized by leveraging electro-optic tuning of resonance frequency. Using this feature, storage, and retrieval of single ion excitation is further demonstrated, without perturbing the emission characteristics. These results promise new opportunities for controllable single-photon sources and efficient spin-photon interfaces.
稀土离子发射器可产生关键的量子资源,包括自旋量子位、单光子源和量子存储器。然而,由于其 4f 内光学跃迁的发射率低,对单个离子的探测仍然具有挑战性。一种可行的方法是通过光学腔中的普塞尔增强发射。能够实时调制腔-离子耦合将进一步提高这些系统的容量。在这里,我们通过将掺铒离子嵌入由薄膜铌酸锂制成的电光活性光子晶体腔中,展示了对单离子发射的直接控制。普塞尔因子超过 170,可实现单离子检测,通过二阶自相关测量得到验证。通过利用共振频率的电光调谐来实现发射率的动态控制。利用这一特性,进一步演示了单离子激发的存储和检索,而不会干扰发射特性。这些结果为可控单光子源和高效的自旋-光子接口提供了新的机会。