Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
Nature. 2022 Nov;611(7937):695-701. doi: 10.1038/s41586-022-05291-y. Epub 2022 Oct 26.
Although tremendous advances have been made in preparing porous crystals from molecular precursors, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10-1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel superlattices with pores of 10 to 1,000 nm from DNA-modified hollow colloidal nanoparticles (NPs) is reported. By tuning hollow NP geometry and DNA design, one can adjust crystal pore geometry (pore size and shape) and channel topology (the way in which pores are interconnected). The assembly of hollow NPs is driven by edge-to-edge rather than face-to-face DNA-DNA interactions. Two new design rules describing this assembly regime emerge from these studies and are then used to synthesize 12 open-channel superlattices with control over crystal symmetry, channel geometry and topology. The open channels can be selectively occupied by guests of the appropriate size and that are modified with complementary DNA (for example, Au NPs).
尽管在从分子前体制备多孔晶体方面已经取得了巨大进展,但在 10-1000nm 的长度尺度上,还没有通用的方法来设计和制造拓扑多样化的多孔胶体晶体。在这个尺寸范围内控制孔隙率可以使这些材料的分子吸收和存储、分离、化学传感、催化和光学性能得到定制。在这里,报道了一种从 DNA 修饰的中空胶体纳米颗粒(NPs)合成具有 10 至 1000nm 孔径的金属开放式通道超晶格的通用方法。通过调整中空 NP 的几何形状和 DNA 的设计,可以调节晶体孔的几何形状(孔径和形状)和通道拓扑结构(孔的互连方式)。中空 NPs 的组装是由边缘到边缘而不是由 DNA-DNA 相互作用驱动的。从这些研究中出现了两个描述这个组装区域的新设计规则,并随后用于合成 12 种具有晶体对称性、通道几何形状和拓扑结构控制的开放式通道超晶格。具有合适尺寸且经过互补 DNA 修饰的(例如,Au NPs)的客体可以选择性地占据开放通道。