K Anitha, S Radhika, C Kavitha, Lai Wen-Cheng, Srividhya S R, K Naresh
Department of Computing Technologies, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, India.
Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602107, India.
Biomedicines. 2022 Sep 29;10(10):2438. doi: 10.3390/biomedicines10102438.
Medical records generated in hospitals are treasures for academic research and future references. Medical Image Retrieval (MIR) Systems contribute significantly to locating the relevant records required for a particular diagnosis, analysis, and treatment. An efficient classifier and effective indexing technique are required for the storage and retrieval of medical images. In this paper, a retrieval framework is formulated by adopting a modified Local Binary Pattern feature (AvN-LBP) for indexing and an optimized Fuzzy Art Map (FAM) for classifying and searching medical images. The proposed indexing method extracts LBP considering information from neighborhood pixels and is robust to background noise. The FAM network is optimized using the Differential Evaluation (DE) algorithm (DEFAMNet) with a modified mutation operation to minimize the size of the network without compromising the classification accuracy. The performance of the proposed DEFAMNet is compared with that of other classifiers and descriptors; the classification accuracy of the proposed AvN-LBP operator with DEFAMNet is higher. The experimental results on three benchmark medical image datasets provide evidence that the proposed framework classifies the medical images faster and more efficiently with lesser computational cost.
医院生成的医疗记录是学术研究和未来参考的宝贵财富。医学图像检索(MIR)系统对于查找特定诊断、分析和治疗所需的相关记录有重大贡献。医学图像的存储和检索需要高效的分类器和有效的索引技术。本文通过采用改进的局部二值模式特征(AvN-LBP)进行索引以及优化的模糊艺术映射(FAM)进行医学图像分类和搜索,构建了一个检索框架。所提出的索引方法在提取LBP时考虑了邻域像素的信息,并且对背景噪声具有鲁棒性。使用差分进化(DE)算法(DEFAMNet)对FAM网络进行优化,并采用改进的变异操作,以在不影响分类精度的情况下最小化网络规模。将所提出的DEFAMNet的性能与其他分类器和描述符的性能进行比较;所提出的AvN-LBP算子与DEFAMNet的分类精度更高。在三个基准医学图像数据集上的实验结果表明,所提出的框架能够以更低的计算成本更快、更高效地对医学图像进行分类。