Suppr超能文献

利用心电图自动检测心房颤动

Automated Atrial Fibrillation Detection with ECG.

作者信息

Wei Ting-Ruen, Lu Senbao, Yan Yuling

机构信息

School of Engineering, Santa Clara University, Santa Clara, CA 95053, USA.

Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

Bioengineering (Basel). 2022 Oct 5;9(10):523. doi: 10.3390/bioengineering9100523.

Abstract

An electrocardiography system records electrical activities of the heart, and it is used to assist doctors in the diagnosis of cardiac arrhythmia such as atrial fibrillation. This study presents a fast, automated deep-learning algorithm that predicts atrial fibrillation with excellent performance (F-1 score 88.2% and accuracy 97.3%). Our approach involves the pre-processing of ECG signals, followed by an alternative representation of the signals using a spectrogram, which is then fed to a fine-tuned EfficientNet B0, a pre-trained convolution neural network model, for the classification task. Using the transfer learning approach and with fine-tuning of the EfficientNet, we optimize the model to achieve highly efficient and effective classification of the atrial fibrillation.

摘要

心电图系统记录心脏的电活动,用于辅助医生诊断心律失常,如心房颤动。本研究提出了一种快速、自动化的深度学习算法,该算法预测心房颤动的性能优异(F1分数为88.2%,准确率为97.3%)。我们的方法包括对心电图信号进行预处理,然后使用频谱图对信号进行替代表示,接着将其输入到经过微调的EfficientNet B0(一个预训练的卷积神经网络模型)中进行分类任务。通过使用迁移学习方法并对EfficientNet进行微调,我们优化了模型,以实现对心房颤动的高效且有效的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee0/9598768/d268b1d18f87/bioengineering-09-00523-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验