Wei Ting-Ruen, Lu Senbao, Yan Yuling
School of Engineering, Santa Clara University, Santa Clara, CA 95053, USA.
Worcester Polytechnic Institute, Worcester, MA 01609, USA.
Bioengineering (Basel). 2022 Oct 5;9(10):523. doi: 10.3390/bioengineering9100523.
An electrocardiography system records electrical activities of the heart, and it is used to assist doctors in the diagnosis of cardiac arrhythmia such as atrial fibrillation. This study presents a fast, automated deep-learning algorithm that predicts atrial fibrillation with excellent performance (F-1 score 88.2% and accuracy 97.3%). Our approach involves the pre-processing of ECG signals, followed by an alternative representation of the signals using a spectrogram, which is then fed to a fine-tuned EfficientNet B0, a pre-trained convolution neural network model, for the classification task. Using the transfer learning approach and with fine-tuning of the EfficientNet, we optimize the model to achieve highly efficient and effective classification of the atrial fibrillation.
心电图系统记录心脏的电活动,用于辅助医生诊断心律失常,如心房颤动。本研究提出了一种快速、自动化的深度学习算法,该算法预测心房颤动的性能优异(F1分数为88.2%,准确率为97.3%)。我们的方法包括对心电图信号进行预处理,然后使用频谱图对信号进行替代表示,接着将其输入到经过微调的EfficientNet B0(一个预训练的卷积神经网络模型)中进行分类任务。通过使用迁移学习方法并对EfficientNet进行微调,我们优化了模型,以实现对心房颤动的高效且有效的分类。