利用深度学习进行多组学数据整合的路线图。
A roadmap for multi-omics data integration using deep learning.
机构信息
Department of Computer Science at the University of Nevada, Las Vegas, NV, USA.
Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
出版信息
Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab454.
High-throughput next-generation sequencing now makes it possible to generate a vast amount of multi-omics data for various applications. These data have revolutionized biomedical research by providing a more comprehensive understanding of the biological systems and molecular mechanisms of disease development. Recently, deep learning (DL) algorithms have become one of the most promising methods in multi-omics data analysis, due to their predictive performance and capability of capturing nonlinear and hierarchical features. While integrating and translating multi-omics data into useful functional insights remain the biggest bottleneck, there is a clear trend towards incorporating multi-omics analysis in biomedical research to help explain the complex relationships between molecular layers. Multi-omics data have a role to improve prevention, early detection and prediction; monitor progression; interpret patterns and endotyping; and design personalized treatments. In this review, we outline a roadmap of multi-omics integration using DL and offer a practical perspective into the advantages, challenges and barriers to the implementation of DL in multi-omics data.
高通量下一代测序现在使得为各种应用生成大量多组学数据成为可能。这些数据通过提供对生物系统和疾病发展的分子机制的更全面理解,彻底改变了生物医学研究。最近,深度学习 (DL) 算法已成为多组学数据分析中最有前途的方法之一,因为它们具有预测性能并且能够捕获非线性和分层特征。尽管将多组学数据整合并转化为有用的功能见解仍然是最大的瓶颈,但将多组学分析纳入生物医学研究以帮助解释分子层之间的复杂关系的趋势非常明显。多组学数据在改善预防、早期检测和预测、监测进展、解释模式和终末分型以及设计个性化治疗方面发挥作用。在这篇综述中,我们概述了使用 DL 进行多组学整合的路线图,并从实用的角度探讨了在多组学数据中实施 DL 的优势、挑战和障碍。