Suppr超能文献

用于气体传感器应用的氧化镓:全面综述。

Gallium Oxide for Gas Sensor Applications: A Comprehensive Review.

作者信息

Zhu Jun, Xu Zhihao, Ha Sihua, Li Dongke, Zhang Kexiong, Zhang Hai, Feng Jijun

机构信息

School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.

Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 3058560, Japan.

出版信息

Materials (Basel). 2022 Oct 20;15(20):7339. doi: 10.3390/ma15207339.

Abstract

GaO has emerged as a promising ultrawide bandgap semiconductor for numerous device applications owing to its excellent material properties. In this paper, we present a comprehensive review on major advances achieved over the past thirty years in the field of GaO-based gas sensors. We begin with a brief introduction of the polymorphs and basic electric properties of GaO. Next, we provide an overview of the typical preparation methods for the fabrication of GaO-sensing material developed so far. Then, we will concentrate our discussion on the state-of-the-art GaO-based gas sensor devices and put an emphasis on seven sophisticated strategies to improve their gas-sensing performance in terms of material engineering and device optimization. Finally, we give some concluding remarks and put forward some suggestions, including (i) construction of hybrid structures with two-dimensional materials and organic polymers, (ii) combination with density functional theoretical calculations and machine learning, and (iii) development of optical sensors using the characteristic optical spectra for the future development of novel GaO-based gas sensors.

摘要

由于其优异的材料性能,氧化镓已成为一种有前途的超宽带隙半导体,可用于众多器件应用。在本文中,我们对过去三十年来基于氧化镓的气体传感器领域取得的主要进展进行了全面综述。我们首先简要介绍氧化镓的多晶型物和基本电学性质。接下来,我们概述了迄今为止开发的用于制造氧化镓传感材料的典型制备方法。然后,我们将集中讨论基于氧化镓的最先进气体传感器器件,并重点介绍从材料工程和器件优化方面提高其气敏性能的七种先进策略。最后,我们给出一些总结性评论并提出一些建议,包括(i)与二维材料和有机聚合物构建混合结构,(ii)与密度泛函理论计算和机器学习相结合,以及(iii)利用特征光谱开发光学传感器,以促进新型基于氧化镓的气体传感器的未来发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d626/9611408/da592bdb1c84/materials-15-07339-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验