Suppr超能文献

基于储层计算的氧化锌忆阻器型数字识别电路设计

Reservoir Computing-Based Design of ZnO Memristor-Type Digital Identification Circuits.

作者信息

Wang Lixun, Zhang Yuejun, Guo Zhecheng, Wu Zhixin, Chen Xinhui, Du Shimin

机构信息

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China.

College of Information Engineering, Jinhua Polytechnic, Jinhua 321017, China.

出版信息

Micromachines (Basel). 2022 Oct 10;13(10):1700. doi: 10.3390/mi13101700.

Abstract

Reservoir Computing (RC) is a network architecture inspired by biological neural systems that maps time-dimensional input features to a high-dimensional space for computation. The key to hardware implementation of the RC system is whether sufficient reservoir states can be generated. In this paper, a laboratory-prepared zinc oxide (ZnO) memristor is reported and modeled. The device is found to have nonlinear dynamic responses and characteristics of simulating neurosynaptic long-term potentiation (LTP) and long-term depression (LTD). Based on this, a novel two-level RC structure based on the ZnO memristor is proposed. Novel synaptic encoding is used to maintain stress activity based on the characteristics of after-discharge and proneness to fatigue during synaptic transmission. This greatly alleviates the limitations of the self-attenuating characteristic reservoir of the duration and interval of the input signal. This makes the reservoir, in combination with a fully connected neural network, an ideal system for time series classification. The experimental results show that the recognition rate for the complete MNIST dataset is 95.08% when 35 neurons are present as hidden layers while achieving low training consumption.

摘要

储层计算(RC)是一种受生物神经系统启发的网络架构,它将时间维度的输入特征映射到高维空间进行计算。RC系统硬件实现的关键在于能否生成足够的储层状态。本文报道并对实验室制备的氧化锌(ZnO)忆阻器进行了建模。发现该器件具有非线性动态响应以及模拟神经突触长时程增强(LTP)和长时程抑制(LTD)的特性。基于此,提出了一种基于ZnO忆阻器的新型两级RC结构。利用新型突触编码,基于突触传递过程中的后放电特性和易疲劳性来维持应激活动。这极大地缓解了输入信号持续时间和间隔的自衰减特性储层的局限性。这使得该储层与全连接神经网络相结合,成为用于时间序列分类的理想系统。实验结果表明,当隐藏层有35个神经元时,完整MNIST数据集的识别率为95.08%,同时训练消耗较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f38f/9612329/6983787c3cac/micromachines-13-01700-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验