文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于分子印迹技术从覆盆子中分离酚类化合物及其抗老年痴呆症活性研究。

Isolation of Phenolic Compounds from Raspberry Based on Molecular Imprinting Techniques and Investigation of Their Anti-Alzheimer's Disease Properties.

机构信息

College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China.

Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China.

出版信息

Molecules. 2022 Oct 14;27(20):6893. doi: 10.3390/molecules27206893.


DOI:10.3390/molecules27206893
PMID:36296486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9611113/
Abstract

Alzheimer's disease is the most common neurodegenerative disease, characterized by memory loss and cognitive dysfunction. Raspberry fruits contain polyphenols which have antioxidant and anti-inflammatory properties. In this study, we used molecular imprinting technology to efficiently isolate phenolic components from the raspberry ethyl acetate extracts. Six phenolic components (ellagic acid, tiliroside, kaempferol-3-o-rutoside, gallic acid, ferulic acid and vanillic acid) were identified by UPLC-Q-TOF-MS analysis. Molecular docking was used to predict the anti-inflammatory effects and anti-Alzheimer's potential of these isolated compounds, which showed a good binding ability to diseases and related proteins. However, the binding energy and docking fraction of ellagic acid, tiliroside, and kaempferol-3-o-rutoside were better than those of gallic acid, ferulic acid and vanillic acid. Additionally, by studying the effects of these six phenolic components on the LPS-induced secretion of inflammatory mediators in murine microglial (BV2) cells, it was further demonstrated that they were all capable of inhibiting the secretion of NO, IL-6, TNF-α, and IL-1β to a certain extent. However, ellagic acid, tiliroside, and kaempferol-3-o-rutoside have better inhibitory effects compared to others. The results obtained suggest that the phenolic components extracted from ethyl acetate extracts of raspberry by molecularly imprinted polymers have the potential to inhibit the progression of Alzheimer's disease.

摘要

阿尔茨海默病是最常见的神经退行性疾病,其特征是记忆力丧失和认知功能障碍。树莓果实含有具有抗氧化和抗炎特性的多酚。在这项研究中,我们使用分子印迹技术从树莓乙酸乙酯提取物中高效分离酚类成分。通过 UPLC-Q-TOF-MS 分析鉴定了六种酚类成分(鞣花酸、三叶豆紫檀苷、山奈酚-3-O-芦丁糖苷、没食子酸、阿魏酸和香草酸)。分子对接用于预测这些分离化合物的抗炎作用和抗阿尔茨海默病潜力,结果表明它们与疾病和相关蛋白具有良好的结合能力。然而,鞣花酸、三叶豆紫檀苷和山奈酚-3-O-芦丁糖苷的结合能和对接分数优于没食子酸、阿魏酸和香草酸。此外,通过研究这六种酚类成分对 LPS 诱导的小鼠小胶质细胞(BV2)细胞中炎症介质分泌的影响,进一步证明它们都能在一定程度上抑制 NO、IL-6、TNF-α和 IL-1β的分泌。然而,鞣花酸、三叶豆紫檀苷和山奈酚-3-O-芦丁糖苷的抑制作用优于其他三种。研究结果表明,通过分子印迹聚合物从树莓乙酸乙酯提取物中提取的酚类成分具有抑制阿尔茨海默病进展的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/a5019de3b67e/molecules-27-06893-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/7aee64d94c89/molecules-27-06893-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/252f948f1e08/molecules-27-06893-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/18102297c57f/molecules-27-06893-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/79248693415c/molecules-27-06893-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/56b6f384525f/molecules-27-06893-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/7e137d907d87/molecules-27-06893-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/5b92c52428e2/molecules-27-06893-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/2ae3ce39da42/molecules-27-06893-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/80f56ce01d2c/molecules-27-06893-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/776bbf1d4f4a/molecules-27-06893-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/ba36a53d9c88/molecules-27-06893-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/78fe11868d5f/molecules-27-06893-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/c1ce1d8ca858/molecules-27-06893-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/d60b9eb8497b/molecules-27-06893-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/511e3d9fc9c0/molecules-27-06893-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/21b1ccb05e78/molecules-27-06893-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/8612e14bffe2/molecules-27-06893-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/544b62a869ff/molecules-27-06893-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/a5019de3b67e/molecules-27-06893-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/7aee64d94c89/molecules-27-06893-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/252f948f1e08/molecules-27-06893-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/18102297c57f/molecules-27-06893-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/79248693415c/molecules-27-06893-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/56b6f384525f/molecules-27-06893-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/7e137d907d87/molecules-27-06893-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/5b92c52428e2/molecules-27-06893-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/2ae3ce39da42/molecules-27-06893-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/80f56ce01d2c/molecules-27-06893-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/776bbf1d4f4a/molecules-27-06893-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/ba36a53d9c88/molecules-27-06893-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/78fe11868d5f/molecules-27-06893-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/c1ce1d8ca858/molecules-27-06893-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/d60b9eb8497b/molecules-27-06893-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/511e3d9fc9c0/molecules-27-06893-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/21b1ccb05e78/molecules-27-06893-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/8612e14bffe2/molecules-27-06893-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/544b62a869ff/molecules-27-06893-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed86/9611113/a5019de3b67e/molecules-27-06893-g019.jpg

相似文献

[1]
Isolation of Phenolic Compounds from Raspberry Based on Molecular Imprinting Techniques and Investigation of Their Anti-Alzheimer's Disease Properties.

Molecules. 2022-10-14

[2]
Research on the pharmacognostic characteristics, physicochemical properties and in vitro antioxidant potency of Rosa laxa Retz. flos.

Microsc Res Tech. 2024-10

[3]
Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.).

J Food Sci. 2011-5

[4]
Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum.

BMC Complement Altern Med. 2017-1-14

[5]
Effects of raspberry fruit extracts and ellagic acid on respiratory burst in murine macrophages.

Food Funct. 2014-6

[6]
Discovery of quality markers in Rubus Chingii Hu using UPLC-ESI-QTOF-MS.

J Pharm Biomed Anal. 2021-9-5

[7]
Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles.

J Pharm Biomed Anal. 2018-9-18

[8]
Deeper Insights on (Schumach. & Thonn.) Müll.Arg Extracts: Chemical Profiles, Biological Abilities, Network Analysis and Molecular Docking.

Biomolecules. 2021-2-4

[9]
Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity.

Nutr Res. 2010-9

[10]
HPLC-ESI-qTOF-MS/MS Characterization, Antioxidant Activities and Inhibitory Ability of Digestive Enzymes with Molecular Docking Analysis of Various Parts of Raspberry ( L.).

Antioxidants (Basel). 2019-8-3

引用本文的文献

[1]
Edible Berries- An Update on Nutritional Composition and Health Benefits- Part III.

Curr Nutr Rep. 2025-1-3

[2]
Chemical composition, pharmacological activity and development strategies of : A review.

Chin Herb Med. 2024-5-22

[3]
Diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease.

Sci Rep. 2024-5-10

[4]
as a Source of Bioactive Chemical Compounds with an Important Role in Human Health and Comparison of the Antioxidant Potential of Fruits and Juice of Three Repeat-Fruiting L. Cultivars.

Metabolites. 2023-11-2

[5]
Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease.

Biology (Basel). 2023-11-20

[6]
Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond.

Curr Neuropharmacol. 2024

[7]
Micronized Powder of Raspberry Pomace as a Source of Bioactive Compounds.

Molecules. 2023-6-20

[8]
Anti-Neuroinflammatory Potential of Natural Products in the Treatment of Alzheimer's Disease.

Molecules. 2023-2-3

本文引用的文献

[1]
Discovery of quality markers in Rubus Chingii Hu using UPLC-ESI-QTOF-MS.

J Pharm Biomed Anal. 2021-9-5

[2]
Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation.

Int J Mol Sci. 2021-3-12

[3]
Molecularly Imprinted Polymer (MIP) Applications in Natural Product Studies Based on Medicinal Plant and Secondary Metabolite Analysis.

Iran Biomed J. 2021-3-1

[4]
Polyphenol-Enriched Extracts from Husks Inhibit Her2-Positive SK-BR-3 Breast Cancer Cell Proliferation and In Vivo Tumor Angiogenesis.

Nutr Cancer. 2021

[5]
Rubus chingii Hu: an overview of botany, traditional uses, phytochemistry, and pharmacology.

Chin J Nat Med. 2020-6

[6]
Biophysical and in Vivo Studies Identify a New Natural-Based Polyphenol, Counteracting Aβ Oligomerization in Vitro and Aβ Oligomer-Mediated Memory Impairment and Neuroinflammation in an Acute Mouse Model of Alzheimer's Disease.

ACS Chem Neurosci. 2019-10-28

[7]
Selective extraction and enrichment of aflatoxins from food samples by mesoporous silica FDU-12 supported aflatoxins imprinted polymers based on surface molecularly imprinting technique.

Talanta. 2019-8-15

[8]
Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS.

Food Chem. 2019-2-8

[9]
Inflammatory demyelinating diseases of the central nervous system in Niger.

Rev Neurol (Paris). 2018-9-27

[10]
Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch.

Food Chem. 2018-7-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索