Suppr超能文献

基于视频的帕金森病患者用药前后手部运动分析,使用高帧率视频和 MediaPipe。

Video-Based Hand Movement Analysis of Parkinson Patients before and after Medication Using High-Frame-Rate Videos and MediaPipe.

机构信息

KIS*MED (AI Systems in Medicine), Technische Universität Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany.

Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany.

出版信息

Sensors (Basel). 2022 Oct 20;22(20):7992. doi: 10.3390/s22207992.

Abstract

Tremor is one of the common symptoms of Parkinson's disease (PD). Thanks to the recent evolution of digital technologies, monitoring of PD patients' hand movements employing contactless methods gained momentum. We aimed to quantitatively assess hand movements in patients suffering from PD using the artificial intelligence (AI)-based hand-tracking technologies of MediaPipe. High-frame-rate videos and accelerometer data were recorded from 11 PD patients, two of whom showed classical Parkinsonian-type tremor. In the OFF-state and 30 Minutes after taking their standard oral medication (ON-state), video recordings were obtained. First, we investigated the frequency and amplitude relationship between the video and accelerometer data. Then, we focused on quantifying the effect of taking standard oral treatments. The data extracted from the video correlated well with the accelerometer-based measurement system. Our video-based approach identified the tremor frequency with a small error rate (mean absolute error 0.229 (±0.174) Hz) and an amplitude with a high correlation. The frequency and amplitude of the hand movement before and after medication in PD patients undergoing medication differ. PD Patients experienced a decrease in the mean value for frequency from 2.012 (±1.385) Hz to 1.526 (±1.007) Hz and in the mean value for amplitude from 8.167 (±15.687) a.u. to 4.033 (±5.671) a.u. Our work achieved an automatic estimation of the movement frequency, including the tremor frequency with a low error rate, and to the best of our knowledge, this is the first paper that presents automated tremor analysis before/after medication in PD, in particular using high-frame-rate video data.

摘要

震颤是帕金森病(PD)的常见症状之一。得益于数字技术的最新发展,采用非接触式方法监测 PD 患者手部运动的方法得到了发展。我们旨在使用 MediaPipe 的基于人工智能(AI)的手部跟踪技术,定量评估患有 PD 的患者的手部运动。从 11 名 PD 患者中记录了高帧率视频和加速度计数据,其中 2 名患者表现出典型的帕金森震颤。在停药(OFF)状态和服用标准口服药物 30 分钟后(ON 状态),进行了视频记录。首先,我们研究了视频和加速度计数据之间的频率和幅度关系。然后,我们专注于量化服用标准口服治疗的效果。从视频中提取的数据与基于加速度计的测量系统很好地相关。我们的基于视频的方法以较小的错误率(平均绝对误差 0.229(±0.174)Hz)识别震颤频率,并具有较高的相关性来量化幅度。接受药物治疗的 PD 患者在服药前后手部运动的频率和幅度不同。PD 患者的频率平均值从 2.012(±1.385)Hz 降低到 1.526(±1.007)Hz,幅度平均值从 8.167(±15.687)a.u. 降低到 4.033(±5.671)a.u.。我们的工作实现了运动频率的自动估计,包括震颤频率,误差率低,据我们所知,这是第一篇使用高帧率视频数据在 PD 患者中呈现自动药物治疗前后震颤分析的论文。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e837/9611677/a803716fa392/sensors-22-07992-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验