Suppr超能文献

使用基于神经网络的方法在具有杂乱背景的视频中检测手部震颤。

Hand tremor detection in videos with cluttered background using neural network based approaches.

作者信息

Wang Xinyi, Garg Saurabh, Tran Son N, Bai Quan, Alty Jane

机构信息

Information and Communication Technology, School of Technology, Environments and Design, College of Sciences and Engineering, University of Tasmania, Hobort, TAS 7005 Australia.

Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobort, TAS 7000 Australia.

出版信息

Health Inf Sci Syst. 2021 Jul 12;9(1):30. doi: 10.1007/s13755-021-00159-3. eCollection 2021 Dec.

Abstract

With the increasing prevalence of neurodegenerative diseases, including Parkinson's disease, hand tremor detection has become a popular research topic because it helps with the diagnosis and tracking of disease progression. Conventional hand tremor detection algorithms involved wearable sensors. A non-invasive hand tremor detection algorithm using videos as input is desirable but the existing video-based algorithms are sensitive to environmental conditions. An algorithm, with the capability of detecting hand tremor from videos with a cluttered background, would allow the videos recorded in a non-research environment to be used. Clinicians and researchers could use videos collected from patients and participants in their own home environment or standard clinical settings. Neural network based machine learning architectures provide high accuracy classification results in related fields including hand gesture recognition and body movement detection systems. We thus investigated the accuracy of advanced neural network architectures to automatically detect hand tremor in videos with a cluttered background. We examined configurations with different sets of features and neural network based classification models. We compared the performance of different combinations of features and classification models and then selected the combination which provided the highest accuracy of hand tremor detection. We used cross validation to test the accuracy of the trained model predictions. The highest classification accuracy for automatically detecting tremor (vs non tremor) was 80.6% and this was obtained using Convolutional Neural Network-Long Short-Term Memory and features based on measures of frequency and amplitude change.

摘要

随着包括帕金森病在内的神经退行性疾病的患病率不断上升,手部震颤检测已成为一个热门研究课题,因为它有助于疾病的诊断和病情进展的跟踪。传统的手部震颤检测算法涉及可穿戴传感器。一种以视频为输入的非侵入性手部震颤检测算法是理想的,但现有的基于视频的算法对环境条件敏感。一种能够从背景杂乱的视频中检测手部震颤的算法,将使在非研究环境中录制的视频得以使用。临床医生和研究人员可以使用在患者和参与者自己家中或标准临床环境中收集的视频。基于神经网络的机器学习架构在包括手势识别和身体运动检测系统在内的相关领域提供了高精度的分类结果。因此,我们研究了先进神经网络架构在自动检测背景杂乱的视频中的手部震颤的准确性。我们检查了具有不同特征集的配置和基于神经网络的分类模型。我们比较了不同特征和分类模型组合的性能,然后选择了提供最高手部震颤检测准确率的组合。我们使用交叉验证来测试训练模型预测的准确性。自动检测震颤(与非震颤相比)的最高分类准确率为80.6%,这是使用卷积神经网络-长短期记忆以及基于频率和幅度变化测量的特征获得的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d170/8275704/22fc997e999c/13755_2021_159_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验