Suppr超能文献

基于国家肺癌筛查试验的胸部 CT 自动肌肉测量预测老年人全因死亡率。

Automated Muscle Measurement on Chest CT Predicts All-Cause Mortality in Older Adults From the National Lung Screening Trial.

机构信息

Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.

Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina.

出版信息

J Gerontol A Biol Sci Med Sci. 2021 Jan 18;76(2):277-285. doi: 10.1093/gerona/glaa141.

Abstract

BACKGROUND

Muscle metrics derived from computed tomography (CT) are associated with adverse health events in older persons, but obtaining these metrics using current methods is not practical for large datasets. We developed a fully automated method for muscle measurement on CT images. This study aimed to determine the relationship between muscle measurements on CT with survival in a large multicenter trial of older adults.

METHOD

The relationship between baseline paraspinous skeletal muscle area (SMA) and skeletal muscle density (SMD) and survival over 6 years was determined in 6,803 men and 4,558 women (baseline age: 60-69 years) in the National Lung Screening Trial (NLST). The automated machine learning pipeline selected appropriate CT series, chose a single image at T12, and segmented left paraspinous muscle, recording cross-sectional area and density. Associations between SMA and SMD with all-cause mortality were determined using sex-stratified Cox proportional hazards models, adjusted for age, race, height, weight, pack-years of smoking, and presence of diabetes, chronic lung disease, cardiovascular disease, and cancer at enrollment.

RESULTS

After a mean 6.44 ± 1.06 years of follow-up, 635 (9.33%) men and 265 (5.81%) women died. In men, higher SMA and SMD were associated with a lower risk of all-cause mortality, in fully adjusted models. A one-unit standard deviation increase was associated with a hazard ratio (HR) = 0.85 (95% confidence interval [CI] = 0.79, 0.91; p < .001) for SMA and HR = 0.91 (95% CI = 0.84, 0.98; p = .012) for SMD. In women, the associations did not reach significance.

CONCLUSION

Higher paraspinous SMA and SMD, automatically derived from CT exams, were associated with better survival in a large multicenter cohort of community-dwelling older men.

摘要

背景

计算机断层扫描(CT)得出的肌肉指标与老年人的不良健康事件有关,但使用当前方法获取这些指标对于大型数据集来说并不实际。我们开发了一种全自动的 CT 图像肌肉测量方法。本研究旨在确定 CT 上的肌肉测量值与老年人大型多中心试验中生存的关系。

方法

在国家肺癌筛查试验(NLST)中,确定了 6803 名男性和 4558 名女性(基线年龄:60-69 岁)基线时脊柱旁骨骼肌面积(SMA)和骨骼肌密度(SMD)与 6 年以上生存的关系。自动化机器学习管道选择合适的 CT 系列,在 T12 处选择单个图像,并对左侧脊柱旁肌肉进行分割,记录横截面积和密度。使用性别分层 Cox 比例风险模型确定 SMA 和 SMD 与全因死亡率之间的关联,调整因素包括年龄、种族、身高、体重、吸烟包年数以及糖尿病、慢性肺部疾病、心血管疾病和癌症的存在。

结果

在平均 6.44 ± 1.06 年的随访后,635 名男性和 265 名女性死亡。在男性中,在完全调整的模型中,较高的 SMA 和 SMD 与较低的全因死亡率风险相关。与一个单位标准差的增加相关的危险比(HR)为 0.85(95%置信区间[CI] = 0.79,0.91;p <.001),SMA 为 0.91(95% CI = 0.84,0.98;p =.012)。在女性中,这些关联没有达到显著水平。

结论

从 CT 检查中自动得出的较高脊柱旁 SMA 和 SMD 与大型多中心社区居住的老年男性队列中的生存更好相关。

相似文献

引用本文的文献

本文引用的文献

2
Muscle metabolism and atrophy: let's talk about sex.肌肉代谢与萎缩:让我们谈谈“性”。
Biol Sex Differ. 2019 Aug 28;10(1):43. doi: 10.1186/s13293-019-0257-3.
3
Automated Segmentation of Tissues Using CT and MRI: A Systematic Review.基于 CT 和 MRI 的组织自动分割:系统评价。
Acad Radiol. 2019 Dec;26(12):1695-1706. doi: 10.1016/j.acra.2019.07.006. Epub 2019 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验