Institute of Chemistry, Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
Dipartimento di Fisica, Università degli Studi di Bari, and INFN, Sezione di Bari, via Amendola 173, 70126 Bari, Italy.
Nanoscale. 2022 Nov 17;14(44):16467-16478. doi: 10.1039/d2nr03664a.
The study of biologically relevant molecules and their interaction with external stimuli on a single molecular scale is of high importance due to the availability of distributed rather than averaged information. Surface enhanced Raman scattering (SERS) provides direct chemical information, but is rather challenging on the single molecule (SM) level, where it is often assumed to require a direct contact of analyte molecules with the metal surface. Here, we detect and investigate the molecular states of single hemin by SM-SERS. A DNA aptamer based G-quadruplex mediated recognition of hemin directs its placement in the SERS hot-spot of a DNA Origami Nanofork Antenna (DONA). The configuration of the DONA structure allows the molecule to be trapped at the plasmonic hot-spot preferentially in no-contact configuration with the metal surface. Owing to high field enhancement at the plasmonic hot spot, the detection of a single folded G-quadruplex becomes possible. For the first time, we present a systematic study by SM-SERS where most hemin molecule adopt a high spin and oxidation state (III) that showed state crossover to low spin upon strong-field-ligand binding. The present study therefore, provides a platform for studying biologically relevant molecules and their properties at SM sensitivity along with demonstrating a conceptual advancement towards successful monitoring of single molecular chemical interaction using DNA aptamers.
由于能够提供分散的而不是平均的信息,因此在单分子尺度上研究与外部刺激相互作用的生物相关分子及其相互作用具有重要意义。表面增强拉曼散射(SERS)提供了直接的化学信息,但在单分子(SM)水平上却具有相当大的挑战性,因为通常认为它需要分析物分子与金属表面直接接触。在这里,我们通过 SM-SERS 检测和研究了单个血红素的分子状态。基于 DNA 适体的 G-四链体介导的血红素识别将其置于 DNA 折纸纳米叉天线(DONA)的 SERS 热点中。DONA 结构的配置允许分子优先以无接触配置被困在等离子体热点处与金属表面。由于等离子体热点处的场增强很高,因此可以检测到单个折叠的 G-四链体。我们首次通过 SM-SERS 进行了系统研究,其中大多数血红素分子采用高自旋和氧化态(III),在强场配体结合下显示出低自旋状态的交叉。因此,本研究为在 SM 灵敏度下研究生物相关分子及其特性提供了一个平台,并展示了使用 DNA 适体成功监测单分子化学相互作用的概念性进展。