Department of Economics, UNC Greensboro, Greensboro, NC, USA.
Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Value Health. 2023 May;26(5):742-749. doi: 10.1016/j.jval.2022.09.009. Epub 2022 Oct 26.
We explored the performance of existing joint health state utility estimators when data are not available on utilities that isolate single-condition health states excluding any co-occurring condition.
Using data from the National Epidemiologic Survey on Alcohol and Related Conditions-III, we defined 2 information sets: (1) a full-information set that includes the narrowly defined health state utilities used in most studies that test the performance of joint health state utility estimators, and (2) a limited information set that includes only the more broadly defined health state utilities more commonly available to researchers. We used an example of alcohol use disorder co-occurring with cirrhosis of the liver, depressive disorder, or nicotine use disorder to illustrate our analysis.
We found that the performance of joint health state utility estimators is appreciably different under limited information than under full information. Full-information estimators typically overestimate the joint state utility, whereas limited-information estimators underestimate the joint state utility, except for the minimum estimator, which is overestimated in all cases.
Researchers using joint health state utility estimators should understand the information set available to them and use methodological guidance appropriate for that information set. We recommend the minimum estimator under limited information based on its ease of use, consistency (and therefore a predictable direction of bias), and lower root mean squared error.
当无法获得排除任何共存疾病的单一疾病健康状况的效用数据时,我们探讨了现有的联合健康状况效用估算器的性能。
我们使用来自国家酒精和相关条件流行病学调查 III 的数据,定义了两个信息集:(1)全信息集,其中包括大多数测试联合健康状况效用估算器性能的研究中使用的狭义健康状况效用;(2)有限信息集,其中仅包括更广泛定义的健康状况效用,这些效用更常见于研究人员。我们使用酒精使用障碍与肝硬化、抑郁障碍或尼古丁使用障碍共存的例子来说明我们的分析。
我们发现,在有限信息下,联合健康状况效用估算器的性能明显不同于全信息下的性能。全信息估算器通常高估联合状态效用,而有限信息估算器低估联合状态效用,但最小估算器除外,在所有情况下都被高估。
使用联合健康状况效用估算器的研究人员应了解他们可用的信息集,并使用适用于该信息集的方法学指导。我们建议在有限信息下使用最小估算器,因为它易于使用、一致(因此具有可预测的偏差方向),并且均方根误差较低。