Suppr超能文献

关键类群的特殊代谢功能维持着土壤微生物组的稳定性。

Specialized metabolic functions of keystone taxa sustain soil microbiome stability.

机构信息

Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.

Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.

出版信息

Microbiome. 2021 Jan 31;9(1):35. doi: 10.1186/s40168-020-00985-9.

Abstract

BACKGROUND

The relationship between biodiversity and soil microbiome stability remains poorly understood. Here, we investigated the impacts of bacterial phylogenetic diversity on the functional traits and the stability of the soil microbiome. Communities differing in phylogenetic diversity were generated by inoculating serially diluted soil suspensions into sterilized soil, and the stability of the microbiome was assessed by detecting community variations under various pH levels. The taxonomic features and potential functional traits were detected by DNA sequencing.

RESULTS

We found that bacterial communities with higher phylogenetic diversity tended to be more stable, implying that microbiomes with higher biodiversity are more resistant to perturbation. Functional gene co-occurrence network and machine learning classification analyses identified specialized metabolic functions, especially "nitrogen metabolism" and "phosphonate and phosphinate metabolism," as keystone functions. Further taxonomic annotation found that keystone functions are carried out by specific bacterial taxa, including Nitrospira and Gemmatimonas, among others.

CONCLUSIONS

This study provides new insights into our understanding of the relationships between soil microbiome biodiversity and ecosystem stability and highlights specialized metabolic functions embedded in keystone taxa that may be essential for soil microbiome stability. Video abstract.

摘要

背景

生物多样性与土壤微生物组稳定性之间的关系仍知之甚少。在这里,我们研究了细菌系统发育多样性对土壤微生物组功能特征和稳定性的影响。通过将系列稀释的土壤悬浮液接种到灭菌土壤中,产生系统发育多样性不同的群落,并通过检测不同 pH 值下群落的变化来评估微生物组的稳定性。通过 DNA 测序检测分类特征和潜在的功能特征。

结果

我们发现,系统发育多样性较高的细菌群落往往更稳定,这意味着具有更高生物多样性的微生物组更能抵抗扰动。功能基因共现网络和机器学习分类分析确定了专门的代谢功能,特别是“氮代谢”和“膦酸盐和膦酸代谢”,作为关键功能。进一步的分类注释发现,关键功能是由特定的细菌类群执行的,包括硝化螺旋菌和Gemmatimonas 等。

结论

本研究为我们理解土壤微生物组生物多样性与生态系统稳定性之间的关系提供了新的见解,并强调了关键类群中嵌入的专门代谢功能,这些功能可能对土壤微生物组的稳定性至关重要。视频摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2201/7849160/1f46350ba45e/40168_2020_985_Fig1_HTML.jpg

相似文献

1
Specialized metabolic functions of keystone taxa sustain soil microbiome stability.
Microbiome. 2021 Jan 31;9(1):35. doi: 10.1186/s40168-020-00985-9.
2
Bacterial Keystone Taxa Regulate Carbon Metabolism in the Earthworm Gut.
Microbiol Spectr. 2022 Oct 26;10(5):e0108122. doi: 10.1128/spectrum.01081-22. Epub 2022 Aug 16.
3
Plant domestication shapes rhizosphere microbiome assembly and metabolic functions.
Microbiome. 2023 Mar 31;11(1):70. doi: 10.1186/s40168-023-01513-1.
4
Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness.
Sci Total Environ. 2022 Apr 20;818:151737. doi: 10.1016/j.scitotenv.2021.151737. Epub 2021 Nov 19.
5
Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan.
Sci Total Environ. 2021 Dec 10;799:149368. doi: 10.1016/j.scitotenv.2021.149368. Epub 2021 Jul 31.
6
Keystone taxa enhance the stability of soil bacterial communities and multifunctionality under steelworks disturbance.
J Environ Manage. 2024 Apr;356:120664. doi: 10.1016/j.jenvman.2024.120664. Epub 2024 Mar 20.
7
Urbanization reduces the stability of soil microbial community by reshaping the diversity and network complexity.
Chemosphere. 2024 Sep;364:143177. doi: 10.1016/j.chemosphere.2024.143177. Epub 2024 Aug 23.
8
Temporal Dynamics of Bacterial Communities along a Gradient of Disturbance in a U.S. Southern Plains Agroecosystem.
mBio. 2022 Jun 28;13(3):e0382921. doi: 10.1128/mbio.03829-21. Epub 2022 Apr 14.
9
Patterns in the Microbial Community of Salt-Tolerant Plants and the Functional Genes Associated with Salt Stress Alleviation.
Microbiol Spectr. 2021 Oct 31;9(2):e0076721. doi: 10.1128/Spectrum.00767-21. Epub 2021 Oct 27.
10
Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees.
mSphere. 2021 Aug 25;6(4):e0003921. doi: 10.1128/mSphere.00039-21. Epub 2021 Aug 11.

引用本文的文献

1
Land use change has profoundly altered the process of bacterial community assembly in the northeastern black soil zone.
Front Microbiol. 2025 Aug 26;16:1640134. doi: 10.3389/fmicb.2025.1640134. eCollection 2025.
2
Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil.
Microorganisms. 2025 Jul 31;13(8):1797. doi: 10.3390/microorganisms13081797.
5
Ecological design of high-performance synthetic microbial communities: from theoretical foundations to functional optimization.
ISME Commun. 2025 Aug 21;5(1):ycaf133. doi: 10.1093/ismeco/ycaf133. eCollection 2025 Jan.
6
Mechanism of soil microbial community degradation under long-term tomato monoculture in greenhouse.
Front Microbiol. 2025 Jul 29;16:1587397. doi: 10.3389/fmicb.2025.1587397. eCollection 2025.
9
Soil microbiome dysbiosis and rhizosphere metabolic dysfunction drive continuous cropping obstacles of .
Front Microbiol. 2025 Jul 9;16:1628234. doi: 10.3389/fmicb.2025.1628234. eCollection 2025.
10
Compartment-specific dynamics of soil microbiota along a plantation chronosequence in karst mountain ecosystems.
Front Microbiol. 2025 Jul 1;16:1626892. doi: 10.3389/fmicb.2025.1626892. eCollection 2025.

本文引用的文献

1
Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning.
Nat Commun. 2019 Oct 24;10(1):4841. doi: 10.1038/s41467-019-12798-y.
2
Diversity-triggered deterministic bacterial assembly constrains community functions.
Nat Commun. 2019 Aug 23;10(1):3833. doi: 10.1038/s41467-019-11787-5.
3
NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice.
Nat Biotechnol. 2019 Jun;37(6):676-684. doi: 10.1038/s41587-019-0104-4. Epub 2019 Apr 29.
4
Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots.
ISME J. 2019 Jul;13(7):1722-1736. doi: 10.1038/s41396-019-0383-2. Epub 2019 Mar 8.
6
Soil microbial moisture dependences and responses to drying-rewetting: The legacy of 18 years drought.
Glob Chang Biol. 2019 Mar;25(3):1005-1015. doi: 10.1111/gcb.14508. Epub 2018 Dec 1.
8
Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium.
ISME J. 2019 Feb;13(2):301-315. doi: 10.1038/s41396-018-0266-y. Epub 2018 Sep 14.
9
Overoptimism in cross-validation when using partial least squares-discriminant analysis for omics data: a systematic study.
Anal Bioanal Chem. 2018 Sep;410(23):5981-5992. doi: 10.1007/s00216-018-1217-1. Epub 2018 Jun 29.
10
Abundance determines the functional role of bacterial phylotypes in complex communities.
Nat Microbiol. 2018 Jul;3(7):767-772. doi: 10.1038/s41564-018-0180-0. Epub 2018 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验