Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France.
Institut Pasteur, Université Paris Cité, Proteomic Platform, Mass Spectrometry for Biology Unit, CNRS, UAR 2024, Paris, France.
Methods Mol Biol. 2023;2426:267-302. doi: 10.1007/978-1-0716-1967-4_12.
Protein post-translational modifications (PTMs) are essential elements of cellular communication. Their variations in abundance can affect cellular pathways, leading to cellular disorders and diseases. A widely used method for revealing PTM-mediated regulatory networks is their label-free quantitation (LFQ) by high-resolution mass spectrometry. The raw data resulting from such experiments are generally interpreted using specific software, such as MaxQuant, MassChroQ, or Proline for instance. They provide data matrices containing quantified intensities for each modified peptide identified. Statistical analyses are then necessary (1) to ensure that the quantified data are of good enough quality and sufficiently reproducible, (2) to highlight the modified peptides that are differentially abundant between the biological conditions under study. The objective of this chapter is therefore to provide a complete data analysis pipeline for analyzing the quantified values of modified peptides in presence of two or more biological conditions using the R software. We illustrate our pipeline starting from MaxQuant outputs dealing with the analysis of A549-ACE2 cells infected by SARS-CoV-2 at different time stamps, freely available on PRIDE (PXD020019).
蛋白质翻译后修饰(PTMs)是细胞通讯的重要组成部分。它们丰度的变化会影响细胞通路,导致细胞紊乱和疾病。揭示 PTM 介导的调控网络的一种常用方法是通过高分辨率质谱进行无标记定量(LFQ)。此类实验产生的原始数据通常使用特定软件进行解释,例如 MaxQuant、MassChroQ 或 Proline 等。这些软件提供包含每个鉴定出的修饰肽定量强度的数据矩阵。然后需要进行统计分析(1)以确保定量数据质量足够好且具有足够的可重复性,(2)以突出在研究的生物学条件之间丰度存在差异的修饰肽。因此,本章的目的是提供一个完整的数据分析管道,用于使用 R 软件分析存在两种或多种生物学条件时修饰肽的定量值。我们从处理 SARS-CoV-2 感染的 A549-ACE2 细胞在不同时间点的 MaxQuant 输出开始说明我们的管道,这些输出可在 PRIDE(PXD020019)上免费获得。