Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao Shandong, 266071, China.
Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA.
Adv Sci (Weinh). 2022 Dec;9(35):e2204837. doi: 10.1002/advs.202204837. Epub 2022 Oct 30.
Interface engineering in electrode materials is an attractive strategy for enhancing charge storage, enabling fast kinetics, and improving cycling stability for energy storage systems. Nevertheless, the performance improvement is usually ambiguously ascribed to the "synergetic effect", the fundamental understanding toward the effect of the interface at molecular level in composite materials remains elusive. In this work, a well-defined nanoscale MoS /TiO interface is rationally designed by immobilizing TiO nanocrystals on MoS nanosheets. The role of heterostructure interface between TiO and MoS by operando synchrotron X-ray diffraction (sXRD), solid-state nuclear magnetic resonance, and density functional theory calculations is investigated. It is found that the existence of a hetero-interfacial electric field can promote charge transfer kinetics. Based on operando sXRD, it is revealed that the heterostructure follows a solid-solution reaction mechanism with small volume changes during cycling. As such, the electrode demonstrates ultrafast Na ions storage of 300 mAh g at 10 A g and excellent reversible capacity of 540 mAh g at 0.2 A g . This work provides significant insights into understanding of heterostructure interface at molecular level, which suggests new strategies for creating unconventional nanocomposite electrode materials for energy storage systems.
界面工程在电极材料中是一种很有吸引力的策略,可以提高电荷存储能力,实现快速动力学,并提高储能系统的循环稳定性。然而,性能的提高通常被含糊地归因于“协同效应”,对于复合材料中界面在分子水平上的作用的基本理解仍然难以捉摸。在这项工作中,通过将 TiO 纳米晶固定在 MoS 纳米片上,合理设计了具有良好定义的纳米级 MoS/TiO 界面。通过原位同步辐射 X 射线衍射(sXRD)、固态核磁共振和密度泛函理论计算研究了 TiO 和 MoS 之间的异质结构界面的作用。结果发现,异质界面处存在的电场可以促进电荷转移动力学。基于原位 sXRD,揭示了该异质结构在循环过程中具有小体积变化的固溶反应机制。因此,该电极表现出 300 mAh g 在 10 A g 时的超快 Na 离子存储能力和在 0.2 A g 时的优异可逆容量 540 mAh g。这项工作为理解分子水平上的异质结构界面提供了重要的见解,为创造用于储能系统的非常规纳米复合电极材料提供了新的策略。