Suppr超能文献

阐明纳米尺度 MoS₂/TiO₂ 异质界面在钠离子存储中的协同效应。

Elucidating the Synergic Effect in Nanoscale MoS /TiO Heterointerface for Na-Ion Storage.

机构信息

Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao Shandong, 266071, China.

Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA.

出版信息

Adv Sci (Weinh). 2022 Dec;9(35):e2204837. doi: 10.1002/advs.202204837. Epub 2022 Oct 30.

Abstract

Interface engineering in electrode materials is an attractive strategy for enhancing charge storage, enabling fast kinetics, and improving cycling stability for energy storage systems. Nevertheless, the performance improvement is usually ambiguously ascribed to the "synergetic effect", the fundamental understanding toward the effect of the interface at molecular level in composite materials remains elusive. In this work, a well-defined nanoscale MoS /TiO interface is rationally designed by immobilizing TiO nanocrystals on MoS nanosheets. The role of heterostructure interface between TiO and MoS by operando synchrotron X-ray diffraction (sXRD), solid-state nuclear magnetic resonance, and density functional theory calculations is investigated. It is found that the existence of a hetero-interfacial electric field can promote charge transfer kinetics. Based on operando sXRD, it is revealed that the heterostructure follows a solid-solution reaction mechanism with small volume changes during cycling. As such, the electrode demonstrates ultrafast Na ions storage of 300 mAh g at 10 A g and excellent reversible capacity of 540 mAh g at 0.2 A g . This work provides significant insights into understanding of heterostructure interface at molecular level, which suggests new strategies for creating unconventional nanocomposite electrode materials for energy storage systems.

摘要

界面工程在电极材料中是一种很有吸引力的策略,可以提高电荷存储能力,实现快速动力学,并提高储能系统的循环稳定性。然而,性能的提高通常被含糊地归因于“协同效应”,对于复合材料中界面在分子水平上的作用的基本理解仍然难以捉摸。在这项工作中,通过将 TiO 纳米晶固定在 MoS 纳米片上,合理设计了具有良好定义的纳米级 MoS/TiO 界面。通过原位同步辐射 X 射线衍射(sXRD)、固态核磁共振和密度泛函理论计算研究了 TiO 和 MoS 之间的异质结构界面的作用。结果发现,异质界面处存在的电场可以促进电荷转移动力学。基于原位 sXRD,揭示了该异质结构在循环过程中具有小体积变化的固溶反应机制。因此,该电极表现出 300 mAh g 在 10 A g 时的超快 Na 离子存储能力和在 0.2 A g 时的优异可逆容量 540 mAh g。这项工作为理解分子水平上的异质结构界面提供了重要的见解,为创造用于储能系统的非常规纳米复合电极材料提供了新的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b658/9762294/b7f9c0416c29/ADVS-9-2204837-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验