Suppr超能文献

高性能0.5T磁共振成像系统的 susceptibility加权成像:协议考量与实验结果 。(注:Susceptibility-weighted imaging 直译为“敏感性加权成像”,这里susceptibility 专业术语一般表述为“磁敏感性”,整句准确表述为“磁敏感性加权成像”,但题目要求不添加解释,所以保留英文表述)

Susceptibility-weighted imaging at high-performance 0.5T magnetic resonance imaging system: Protocol considerations and experimental results.

作者信息

Qiu Yueqi, Bai Haoran, Chen Hao, Zhao Yue, Luo Hai, Wu Ziyue, Zhang Zhiyong

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Neurosci. 2022 Oct 12;16:999240. doi: 10.3389/fnins.2022.999240. eCollection 2022.

Abstract

The high-performance low-field magnetic resonance imaging (MRI) system, equipped with modern hardware and contemporary imaging capabilities, has garnered interest within the MRI community in recent years. It has also been proven to have unique advantages over high-field MRI in both physical and cost aspects. However, for susceptibility weighted imaging (SWI), the low signal-to-noise ratio and the long echo time inherent at low field hinder the SWI from being applied to clinical applications. This work optimized the imaging protocol to select suitable parameters such as the values of time of echo (TE), repetition time (TR), and the flip angle (FA) of the RF pulse according to the signal simulations for low-field SWI. To improve the signal-to-noise ratio (SNR) performance, averaging multi-echo magnitude images and BM4D phase denoising were proposed. A comparison of the SWI in 0.5T and 1.5T was carried out, demonstrating the capability to identify magnetic susceptibility differences between variable tissues, especially, the blood veins. This would open the possibility to extend SWI applications in the high-performance low field MRI.

摘要

配备现代硬件和当代成像能力的高性能低场磁共振成像(MRI)系统近年来在MRI领域引起了关注。在物理和成本方面,它也被证明比高场MRI具有独特优势。然而,对于磁敏感加权成像(SWI),低场固有的低信噪比和长回波时间阻碍了SWI应用于临床。这项工作根据低场SWI的信号模拟优化了成像协议,以选择合适的参数,如回波时间(TE)、重复时间(TR)和射频脉冲的翻转角(FA)。为了提高信噪比(SNR)性能,提出了对多回波幅度图像进行平均和BM4D相位去噪的方法。对0.5T和1.5T的SWI进行了比较,证明了识别不同组织间磁敏感性差异的能力,特别是静脉。这将为在高性能低场MRI中扩展SWI应用开辟可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5789/9597077/2d162897da57/fnins-16-999240-g001.jpg

相似文献

2
5T magnetic resonance imaging: radio frequency hardware and initial brain imaging.
Quant Imaging Med Surg. 2023 May 1;13(5):3222-3240. doi: 10.21037/qims-22-945. Epub 2023 Mar 29.
4
Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising.
Neuroimage. 2013 Apr 15;70:308-16. doi: 10.1016/j.neuroimage.2012.12.067. Epub 2013 Jan 5.
5
Optimization of Gradient-Echo Echo-Planar Imaging for T* Contrast in the Brain at 0.5 T.
Sensors (Basel). 2023 Oct 12;23(20):8428. doi: 10.3390/s23208428.

引用本文的文献

1
Advancements in MRI application in the morphological development of fetal cerebral venous system: a review.
Childs Nerv Syst. 2025 Jun 2;41(1):201. doi: 10.1007/s00381-025-06862-w.
2
MRI at low field: A review of software solutions for improving SNR.
NMR Biomed. 2025 Jan;38(1):e5268. doi: 10.1002/nbm.5268. Epub 2024 Oct 7.
3
Assessment of the Diagnostic Efficacy of Low-Field Magnetic Resonance Imaging: A Systematic Review.
Diagnostics (Basel). 2024 Jul 19;14(14):1564. doi: 10.3390/diagnostics14141564.
4
Optimization of Gradient-Echo Echo-Planar Imaging for T* Contrast in the Brain at 0.5 T.
Sensors (Basel). 2023 Oct 12;23(20):8428. doi: 10.3390/s23208428.
5
Advances in differential diagnosis of cerebrovascular diseases in magnetic resonance imaging: a narrative review.
Quant Imaging Med Surg. 2023 Apr 1;13(4):2712-2734. doi: 10.21037/qims-22-750. Epub 2023 Feb 22.

本文引用的文献

1
Superconducting magnet designs and MRI accessibility: A review.
NMR Biomed. 2023 Mar 13:e4921. doi: 10.1002/nbm.4921.
2
Diagnostic Performance of 0.55 T MRI for Intracranial Aneurysm Detection.
Invest Radiol. 2023 Feb 1;58(2):121-125. doi: 10.1097/RLI.0000000000000918. Epub 2022 Sep 2.
3
[Modern mid-field magnetic resonance imaging in private practice : Field report].
Radiologe. 2022 May;62(5):405-409. doi: 10.1007/s00117-022-00988-7. Epub 2022 Apr 28.
5
Low-Field Magnetic Resonance Imaging: Its History and Renaissance.
Invest Radiol. 2021 Nov 1;56(11):669-679. doi: 10.1097/RLI.0000000000000810.
6
ESMRMB annual meeting roundtable discussion: "when less is more: the view of MRI vendors on low-field MRI".
MAGMA. 2021 Aug;34(4):479-482. doi: 10.1007/s10334-021-00938-9. Epub 2021 Jul 14.
7
Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction.
Sci Rep. 2021 Apr 15;11(1):8248. doi: 10.1038/s41598-021-87482-7.
9
Low-Field MRI of Stroke: Challenges and Opportunities.
J Magn Reson Imaging. 2021 Aug;54(2):372-390. doi: 10.1002/jmri.27324. Epub 2020 Aug 22.
10
Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI.
Radiology. 2019 Nov;293(2):384-393. doi: 10.1148/radiol.2019190452. Epub 2019 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验